2 resultados para terpyridine

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photochemical cis-trans isomerization of the 4-{4-[2-(pyridin-4-yl)ethenyl]phenyl}-2,2': 6',2''-terpyridine ligand (vpytpy) was investigated by UV-vis, NMR and TWIM-MS. Ion mobility mass spectrometry was performed pursuing the quantification of the isomeric composition during photolysis, however an in-source trans-to-cis isomerization process was observed. In order to overcome this inherent phenomenon, the isomerization of the vpytpy species was suppressed by complexation, reacting with iron(II) ions, and forming the [Fe(vpytpy)(2)](2+) complex. The strategy of "freezing" the cis-trans isomerizable ligand at a given geometric conformation was effective, preventing further isomerization, thus allowing the distinction of each one of the isomers in the photolysed mixture. In addition, the experimental drift times were related to the calculated surface areas of the three possible cis-cis, cis-trans and trans-trans iron(II) complex isomers. The stabilization of the ligand in a given conformation also allows us to obtain the cis-cis and cis-trans complexes exhibiting the ligand in the metastable cis-conformation, as well as in the thermodynamically stable trans-conformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general strategy for electrochemically induced assembly of coordination metallopolymers is demonstrated using the tritopic bridging [Ru-3(mu(3)-O)(CH3COO)(6)(pytpy)(3)](+) cluster complex, where pytpy is the 4'-(4-pyridyl)-2,2':6',2 ''-terpyridine ligand, and iron(III) ions. The concept of such an electrochemically induced coordinative assembly was proven exploring the large difference in the [Fe(pytpy)2 complex formation constants depending on the iron ion oxidation state. Much more stable bridging complexes are formed in the presence of Fe(II) in contrast to Fe(III) ions. The build-up of electrochemically active films on FTO electrodes was confirmed by the growth of the corresponding voltammetric peaks concomitantly with the rise of typical triruthenium cluster and [Fe(pytpy)(2)](2+) complex absorption bands. The metallopolymer was constituted by agglomerates of more or less fused tape like structures, exhibiting large voids and pinholes, as revealed by SEM and AFM images. The adhesion/deposition on FTO was improved by functionalizing the surface with TES-tpy and HOOC-tpy, which increased the surface coverage up to 80%, as estimated by impedance spectroscopy. (C) 2012 Elsevier Ltd. All rights reserved.