3 resultados para tension-compression asymmetry
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
There is no reason for Dentistry to use different terms for phenomena defined in Physics, the specific field in which concepts associated with forces are established and adapted. In place of pressure/tension, the compression/traction pair should be used. This study defines each one of these terms and justifies their use. Our contemporary world demands standardized criteria, methods, measures, concepts and terms to ensure that study protocols, results and applications are used in the same way in any country or area of human action.
Resumo:
During orthodontic tooth movement (OTM), alveolar bone is resorbed by osteoclasts in compression sites (CS) and is deposited by osteoblasts in tension sites (TS). The aim of this study was to develop a standardized OTM protocol in mice and to investigate the expression of bone resorption and deposition markers in CS and TS. An orthodontic appliance was placed in C57BL6/J mice. To define the ideal orthodontic force, the molars of the mice were subjected to forces of 0.1 N, 0.25 N, 0.35 N and 0.5 N. The expression of mediators that are involved in bone remodeling at CS and TS was analyzed using a Real-Time PCR. The data revealed that a force of 0.35 N promoted optimal OTM and osteoclast recruitment without root resorption. The levels of TNF-alpha, RANKL, MMP13 and OPG were all altered in CS and TS. Whereas TNF-a and Cathepsin K exhibited elevated levels in CS. RUNX2 and OCN levels were higher in TS. Our results suggest that 0.35 N is the ideal force for OTM in mice and has no side effects. Moreover, the expression of bone remodeling markers differed between the compression and the tension areas, potentially explaining the distinct cellular migration and differentiation patterns in each of these sites. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a method to design membrane elements of concrete with orthogonal mesh of reinforcement which are subject to compressive stress. Design methods, in general, define how to quantify the reinforcement necessary to support the tension stress and verify if the compression in concrete is within the strength limit. In case the compression in membrane is excessive, it is possible to use reinforcements subject to compression. However, there is not much information in the literature about how to design reinforcement for these cases. For that, this paper presents a procedure which uses the model based on Baumann's [1] criteria. The strength limits used herein are those recommended by CEB [3], however, a model is proposed in which this limit varies according to the tensile strain which occur perpendicular to compression. This resistance model is based on concepts proposed by Vecchio e Collins [2].