6 resultados para tartrate
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Metabolomics has become an invaluable tool to unveil biology of pathogens, with immediate application to chemotherapy. It is currently accepted that there is not one single technique capable of obtaining the whole metabolic fingerprint of a biological system either due to their different physical-chemical properties or concentrations. In this work, we have explored the capability of capillary electrophoresis mass spectrometry with a sheathless interface with electrospray ionization (CE-ESI-TOF-MS) to separate metabolites in order to be used as a complementary technique to LC. As proof of concept, we have compared the metabolome of Leishmania infantum promastigotes BCN 150 (Sb (III) IC50 = 20.9 mu M) and its variation when treated with 120 mu M of Sb(III) potassium tartrate for 12 h, as well as with its Sb(III) resistant counterpart obtained by growth of the parasites under increasing Sb(III) in a step-wise manner up to 180 mu M. The number of metabolites compared were of 264 for BCN150 Sb(III) treated versus nontreated and of 195 for Sb(III) resistant versus susceptible parasites. After successive data filtering, differences in seven metabolites identified in databases for Leishmania pathways, showed the highest significant differences, corresponding mainly to amino acids or their metabolite surrogates. Most of them were assigned to sulfur containing amino acids and polyamine biosynthetic pathways, of special relevance considering the deterioration of the thiol-dependent redox metabolism in Leishmania by Sb(III). Given the low concentrations typical for most of these metabolites, the assay can be considered a success that should be explored for new biological questions.
Resumo:
The replacement of the calcified cartilage by bone tissue during the endochondral ossification of the mandibular condyle is dependent of the resorbing activity of osteoclats. After partial resorption, calcified cartilage septa are covered by a primary bone matrix secreted by osteoblasts. Osteoadherin (OSAD) is a small proteoglycan present in bone matrix but absent in cartilage during the endochondral ossification. The aim of this study was to analyze the effect of alendronate, a drug known to inhibit bone resorption by osteoclasts, on the endochondral ossification of the mandibular condyle of young rats, by evaluating the distribution of osteoclasts and the presence of OSAD in the bone matrix deposited. Wistar newborn rats (n = 45) received daily injections of alendronate (n = 27) or sterile saline solution as control (n = 18) from the day of birth until the ages of 4, 14 and 30 days. At the days mentioned, the mandibular condyles were collected and processed for transmission electron microscopy analysis. Specimens were also submitted to tartrate resistant acid phosphatase (TRAP) histochemistry and ultrastructural immunodetection of OSAD. Alendronate treatment did not impede the recruitment and fusion of osteoclasts at the ossification zone during condyle growth, but they presented inactivated phenotype. The trabeculae at the ossification area consisted of cartilage matrix covered by a layer of primary bone matrix that was immunopositive to OSAD at all time points studied. Apparently, alendronate impeded the removal of calcified cartilage and maturation of bone trabeculae in the mandibular ramus, while in controls they occurred normally. These findings highlight for giving attention to the potential side-effects of bisphosphonates administered to young patients once it may represent a risk of disturbing maxillofacial development.
Resumo:
Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 mu M) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 mu M enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in post-translational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.
Resumo:
Introduction: The aim of this study was to characterize the formation and progression of experimentally induced periapical lesions in TLR2 knockout (TLR2 KO) mice. Methods: Periapical lesions were induced in molars of 28 wild type (WT) and 27 TLR2 KO mice. After 7, 21, and 42 days, the animals were euthanized, and the mandibles were subjected to histotechnical processing. Hematoxylin-eosin-stained sections were examined under conventional light microscopy for the description of pulpal, apical, and periapical features and under fluorescence microscopy for the determination of the periapical lesion size. The subsequent sections were evaluated by tartrate resistant acid phosphatase histoenzymology (osteoclasts), Brown and Brenn staining (bacteria), and immunohistochemistry (RANK, RANKL, and OPG). Data were analyzed by the Mann-Whitney U and Kruskal-Wallis tests (alpha = 0.05), Results: The WT group showed significant differences (P < .05) in the periapical lesion size and the osteoclast number between 7 and 42 days and between 21 and 42 days. In the TLR2 KO group, significant differences (P < .05) in the periapical lesion size and the osteoclast number were found between 7 days and the other periods. There was a significant difference (P < .05) between the 2 types of animal regarding the periapical lesion size, which was larger in the TLR2 KO animals. No significant differences (P > .05) were found between WT and TLR2 KO mice related to the pulpal, apical, and periapical features; bacteria localization; and immunohistochemical results (except for RANK expression). Conclusions: TLR2 KO animals developed larger periapical lesions with a greater number of osteoclasts, indicating the important role of this receptor in the host's immune and inflammatory response to root canal and periradicular infection. (J Endod 2012;38:803-813)
Resumo:
Background: The bone tissue responses to Cyanoacrylate have been described in the literature, but none used N-butyl-2-cyanoacrilate (NB-Cn) for bone graft fixation. Purpose: The aims of the study were: (a) to analyze the bone grafts volume maintenance fixed either with NB-Cn or titanium screw; (b) to assess the incorporation of onlay grafts on perforated recipient bed; and (c) the differences of expression level of tartrate-resistant acid phosphatase (TRAP) protein involved in bone resorption. Materials and Methods: Eighteen New Zealand White rabbits were submitted to calvaria onlay grafting on both sides of the mandible. On one side, the graft was fixed with NB-Cn, while on the other hand the bone graft was secured with an osteosynthesis screw. The computed tomography (CT) was performed just after surgery and at animals sacrifice, after 1 (n = 9) and 6 weeks (n = 9), in order to estimate the bone grafts volume along the experiments. Histological sections of the grafted areas were prepared to evaluate the healing of bone grafts and to assess the expression of TRAP protein. Results: The CT scan showed better volume maintenance of bone grafts fixed with NB-Cn (p = 0.05) compared with those fixed with screws, in both experimental times (analysis of variance). The immunohistochemical evaluation showed that the TRAP expression in a 6-week period was significantly higher compared with the 1-week period, without showing significant difference between the groups (Wilcoxon and MannWhitney). Histological analysis revealed that the NB-Cn caused periosteum damage, but provided bone graft stabilization and incorporation similar to the control group. Conclusion: The perforation provided by screw insertion into the graft during fixation may have triggered early revascularization and remodeling to render increased volume loss compared with the experimental group. These results indicate that the NB-Cn possesses equivalent properties to titanium screw to be used as bone fixation material in osteosynthesis.
Resumo:
Emerging treatments for dry age-related macular degeneration (AMD) and geographi c atrophy focus on two strategies that target components involved in physiopathological pathways: prevention of photoreceptors and retinal pigment epithelium loss (neuroprotection induction, oxidative damage prevention, and visual cycle modification) and suppression of inflammation. Neuroprotective drugs, such as ciliary neurotrophic factor, brimonidine tartrate, tandospirone, and anti-amyloid β antibodies, aim to prevent apoptosis of retinal cells. Oxidative stress and depletion of essential micronutrients are targeted by the Age-Related Eye Disease Study (AREDS) formulation. Visual cycle modulators reduce the activity of the photoreceptors and retinal accumulation of toxic fluorophores and lipofuscin. Eyes with dry age-related macular degeneration present chronic inflammation and potential treatments include corticosteroid and complement inhibition. We review the current concepts and rationale of dry age-related macular degeneration treatment that will most likely include a combination of drugs targeting different pathways involved in the development and progression of age-related macular degeneration.