2 resultados para taphonomy
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A remarkable cervid bone accumulation occurs at a single passage (named Cervid Passage; CP) at Lapa Nova, a maze cave in eastern Brazil. CP lies away from cave entrances, is a typical pitfall passage and contains bone remains of at least 121 cervids, besides few bats, peccaries and rodents remains. There is no evidence of water (or sediment) flow at the site and in general bones lack post depositional alterations and display anatomical proximity, suggesting that the majority of the remains found inside CP (mainly cervids) are due to animals that after entering the cave got trapped in the site. Observations suggest that two entrances could have provided access to cervids (and the few other animals, besides bats), either by falling inside the cave or by entering by their own free will. Once inside the cave, the maze pattern would make route finding difficult, and of all passage intersections, only the one leading to CP would result in a non-return situation, starving the animal to death. Radiocarbon dates suggest that animal entrapment occurred during at least 5 thousand years, during the Holocene. The reasons why mainly cervids were found are unknown but they are probably related to the biology of this group coupled with the fact that caves provide several specific taphonomic processes that may account for a strong bias in bone accumulation. Indeed, the frequent occurrence of Cervidae in both the fossil and sub-fossil record in Brazilian caves may be related to an overall high faunal abundance or may suggest that these animals were especially prone to enter caves, perhaps in search of nutrients (as cave saltpetre) or water.
Resumo:
In this paper, we present the results of an experimental approach developed to study the macroscopic and microbiological alteration of bird and small mammal bones buried under a Cerrado biome. The first experiment evaluated the macroscopic alteration of cooked and fresh carcasses buried through the dry and rainy seasons. The second experiment analyzed the mycobiota associated to the decomposition of a complete bird that remained buried for almost a year. Results show that in tropical forest environments: 1) bone structure and pre-taphonomic factors determine its differential alteration by biochemical processes; 2) fungal populations associated to the decomposition of animal remains depend on soil chemistry and ecological dynamics; 3) even in a corrosive environment, bird bones are more capable of surviving to several mycological decomposition steps. (C) 2011 Elsevier Ltd. All rights reserved.