5 resultados para symbiont

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the presence of tick-associated bacteria and protozoa in Ornithodoros rostratus ticks (adults, nymphs, and eggs) from the Pantanal region of Brazil were determined by molecular detection. In these ticks, DNA from protozoa in the genera Babesia and Hepatozoon, and bacteria from the genera Rickettsia, Borrelia, Anaplasma, and Ehrlichia were not detected. Conversely, all tested ticks (100%) yielded PCR products for 3 Coxiella genes (16S rRNA, pyrG, cap). PCR and phylogenetic analysis of 3 amplified genes (16S rRNA, pyrG, cap) demonstrated that the agent infecting O. rostratus ticks was a member of the genus Coxiella. This organism grouped with Coxiella symbionts of other soft tick species (Argasidae), having different isolates of C. burnetii as a sister group, and these 2 groups formed a clade that grouped with another clade containing Coxiella symbionts of hard tick species (Ixodidae). Analysis of tick mitochondrial 16S rRNA gene database composed mostly of tick species previously shown to harbor Coxiella symbionts suggests a phylogenetic congruence of ticks and their Coxiella symbionts. Furthermore, these results suggest a very long period of coevolution between ticks and Coxiella symbionts and indicates that the original infection may have occurred in an ancestor common to the 2 main tick families, Argasidae (soft ticks) and Ixodidae (hard ticks). However, this evolutionary relationship must be confirmed by more extensive testing of additional tick species and expanded populations. (c) 2012 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Credneramides A (1) and B (2), two vinyl chloride-containing metabolites, were isolated from a Papua New Guinea collection of cf. Trichodesmium sp. nov. and expand a recently described class of vinyl chloride-containing natural products. The precursor fatty acid, credneric acid (3), was isolated from both the aqueous and organic fractions of the parent fraction as well as from another geographically and phylogenetically distinct cyanobacterial collection (Panama). Credneramides A and B inhibited spontaneous calcium oscillations in murine cerebrocortical neurons at low micro-molar concentrations (1, IC50 4.0 mu M; 2, IC50 3.8 mu M).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calyptraeotheres garthi (Fenucci, 1975) is one of nine species of Pinnotheridae occurring in Argentina and the only species of that genus located in this region. This species can be found from the San Maths Gulf, Argentina to Rio Grande do Sul, Brazil where it lives in symbiotic association with limpets of the family Calyptraeidae. Currently, two species of limpets have been reported as hosts of this species: Crepidula protea (d'Orbigny, 1841) and Crepidula argentina Simone, Pastorino & Penchaszadeh, 2000. We report here four more species of limpets serving as hosts of C. garthi, namely Bostrycapulus odites Collin, 2005, Crepidula cachimilla Cledon, Simone & Penchaszadeh, 2004, Crepidula plana Say, 1822 and Trochita pileus (Lamarck, 1822). Thus, this pinnotherid appears to be, as others members of the family, a generalist symbiotic species since it dwells on almost all the potential limpet species reported for Argentina. However, there are notable differences in prevalence of C. garthi on each host, which suggest that the symbiont might prefer species of Crepidula over the others genera (Trochita and Bostrycapulus). Additionally, there exists an apparent relationship between host size and prevalence (e.g., Crepidula cachimilla, the limpet with the highest prevalence, is clearly larger than the others hosts). Perhaps it is premature to conclude that the size of the host might be of benefit for the symbiont, but it is a hypothesis worthy of being explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Trypanosomatids of the genera Angomonas and Strigomonas live in a mutualistic association characterized by extensive metabolic cooperation with obligate endosymbiotic Betaproteobacteria. However, the role played by the symbiont has been more guessed by indirect means than evidenced. Symbiont-harboring trypanosomatids, in contrast to their counterparts lacking symbionts, exhibit lower nutritional requirements and are autotrophic for essential amino acids. To evidence the symbiont’s contributions to this autotrophy, entire genomes of symbionts and trypanosomatids with and without symbionts were sequenced here. Results Analyses of the essential amino acid pathways revealed that most biosynthetic routes are in the symbiont genome. By contrast, the host trypanosomatid genome contains fewer genes, about half of which originated from different bacterial groups, perhaps only one of which (ornithine cyclodeaminase, EC:4.3.1.12) derived from the symbiont. Nutritional, enzymatic, and genomic data were jointly analyzed to construct an integrated view of essential amino acid metabolism in symbiont-harboring trypanosomatids. This comprehensive analysis showed perfect concordance among all these data, and revealed that the symbiont contains genes for enzymes that complete essential biosynthetic routes for the host amino acid production, thus explaining the low requirement for these elements in symbiont-harboring trypanosomatids. Phylogenetic analyses show that the cooperation between symbionts and their hosts is complemented by multiple horizontal gene transfers, from bacterial lineages to trypanosomatids, that occurred several times in the course of their evolution. Transfers occur preferentially in parts of the pathways that are missing from other eukaryotes. Conclusion We have herein uncovered the genetic and evolutionary bases of essential amino acid biosynthesis in several trypanosomatids with and without endosymbionts, explaining and complementing decades of experimental results. We uncovered the remarkable plasticity in essential amino acid biosynthesis pathway evolution in these protozoans, demonstrating heavy influence of horizontal gene transfer events, from Bacteria to trypanosomatid nuclei, in the evolution of these pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some non-pathogenic trypanosomatids maintain a mutualistic relationship with a betaproteobacterium of the Alcaligenaceae family. Intensive nutritional exchanges have been reported between the two partners, indicating that these protozoa are excellent biological models to study metabolic co-evolution. We previously sequenced and herein investigate the entire genomes of five trypanosomatids which harbor a symbiotic bacterium (SHTs for Symbiont-Haboring Trypanosomatids) and the respective bacteria (TPEs for Trypanosomatid Proteobacterial Endosymbiont), as well as two trypanosomatids without symbionts (RTs for Regular Trypanosomatids), for the presence of genes of the classical pathways for vitamin biosynthesis. Our data show that genes for the biosynthetic pathways of thiamine, biotin, and nicotinic acid are absent from all trypanosomatid genomes. This is in agreement with the absolute growth requirement for these vitamins in all protozoa of the family. Also absent from the genomes of RTs are the genes for the synthesis of pantothenic acid, folic acid, riboflavin, and vitamin B6. This is also in agreement with the available data showing that RTs are auxotrophic for these essential vitamins. On the other hand, SHTs are autotrophic for such vitamins. Indeed, all the genes of the corresponding biosynthetic pathways were identified, most of them in the symbiont genomes, while a few genes, mostly of eukaryotic origin, were found in the host genomes. The only exceptions to the latter are: the gene coding for the enzyme ketopantoate reductase (EC:1.1.1.169) which is related instead to the Firmicutes bacteria; and two other genes, one involved in the salvage pathway of pantothenic acid and the other in the synthesis of ubiquinone, that are related to Gammaproteobacteria. Their presence in trypanosomatids may result from lateral gene transfer. Taken together, our results reinforce the idea that the low nutritional requirement of SHTs is associated with the presence of the symbiotic bacterium, which contains most genes for vitamin production.