7 resultados para subchondral bone osteoblasts
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective To assess several baseline risk factors that may predict patellofemoral and tibiofemoral cartilage loss during a 6-month period. Methods For 177 subjects with chronic knee pain, 3T magnetic resonance imaging (MRI) of both knees was performed at baseline and followup. Knees were semiquantitatively assessed, evaluating cartilage morphology, subchondral bone marrow lesions, meniscal morphology/extrusion, synovitis, and effusion. Age, sex, and body mass index (BMI), bone marrow lesions, meniscal damage/extrusion, synovitis, effusion, and prevalent cartilage damage in the same subregion were evaluated as possible risk factors for cartilage loss. Logistic regression models were applied to predict cartilage loss. Models were adjusted for age, sex, treatment, and BMI. Results Seventy-nine subregions (1.6%) showed incident or worsening cartilage damage at followup. None of the demographic risk factors was predictive of future cartilage loss. Predictors of patellofemoral cartilage loss were effusion, with an adjusted odds ratio (OR) of 3.5 (95% confidence interval [95% CI] 1.39.4), and prevalent cartilage damage in the same subregion with an adjusted OR of 4.3 (95% CI 1.314.1). Risk factors for tibiofemoral cartilage loss were baseline meniscal extrusion (adjusted OR 3.6 [95% CI 1.310.1]), prevalent bone marrow lesions (adjusted OR 4.7 [95% CI 1.119.5]), and prevalent cartilage damage (adjusted OR 15.3 [95% CI 4.947.4]). Conclusion Cartilage loss over 6 months is rare, but may be detected semiquantitatively by 3T MRI and is most commonly observed in knees with Kellgren/Lawrence grade 3. Predictors of patellofemoral cartilage loss were effusion and prevalent cartilage damage in the same subregion. Predictors of tibiofemoral cartilage loss were prevalent cartilage damage, bone marrow lesions, and meniscal extrusion.
Resumo:
We tested the hypothesis that the osteoblast differentiation status of bone marrow stem cells (BMSCs) combined with a three-dimensional (3D) structure modulates bone formation when autogenously implanted. Rat BMSCs were aspirated, expanded, and seeded into a 3D composite of poly(lactide-co-glycolide) and calcium phosphate (PLGA/CaP) to produce a hybrid biomaterial. Calvarial defects were implanted with (1) scaffold without cells (SC/NC), (2) scaffold and BMSCs (SC + BMSC), (3) scaffold and osteoblasts differentiated for 7 days (SC + OB7), and (4) for 14 days (SC + OB14). After 4 weeks, there was more bone formation in groups combining scaffold and cells, SC + BMSC and SC + OB7. A nonsignificant higher amount of bone formation was observed on SC + OB14 compared with SC/NC. Additionally, more blood vessels were counted within all hybrid biomaterials, without differences among them, than into SC/NC. These findings provide evidences that the cell differentiation status affects in vivo bone formation in autogenously implanted cell-based constructs. Undifferentiated BMSCs or osteoblasts in early stage of differentiation combined with PLGA/CaP scaffold favored bone formation compared with plain scaffold and that one associated with more mature osteoblasts.
Resumo:
A common subject in bone tissue engineering is the need for porous scaffolds to support cell and tissue interactions aiming at repairing bone tissue. As poly(lactide-co-glycolide)calcium phosphate (PLGACaP) scaffolds can be manufactured with different pore sizes, the aim of this study was to evaluate the effect of pore diameter on osteoblastic cell responses and bone tissue formation. Scaffolds were prepared with 85% porosity, with pore diameters in the ranges 470590, 590850 and 8501200 mu m. Rat bone marrow stem cells differentiated into osteoblasts were cultured on the scaffolds for up to 10 days to evaluate cell growth, alkaline phosphatase (ALP) activity and the gene expression of the osteoblast markers RUNX2, OSX, COL, MSX2, ALP, OC and BSP by real-time PCR. Scaffolds were implanted in critical size rat calvarial defects for 2, 4, and 8 weeks for histomorphometric analysis. Cell growth and ALP activity were not affected by the pore size; however, there was an increase in the gene expression of osteoblastic markers with the increase in the pore sizes. At 2 weeks all scaffolds displayed a similar amount of bone and blood vessels formation. At 4 and 8 weeks much more bone formation and an increased number of blood vessels were observed in scaffolds with pores of 470590 mu m. These results show that PLGACaP is a promising biomaterial for bone engineering. However, ideally, combinations of larger (similar to 1000 mu m) and smaller (similar to 500 mu m) pores in a single scaffold would optimize cellular and tissue responses during bone healing. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
During orthodontic tooth movement (OTM), alveolar bone is resorbed by osteoclasts in compression sites (CS) and is deposited by osteoblasts in tension sites (TS). The aim of this study was to develop a standardized OTM protocol in mice and to investigate the expression of bone resorption and deposition markers in CS and TS. An orthodontic appliance was placed in C57BL6/J mice. To define the ideal orthodontic force, the molars of the mice were subjected to forces of 0.1 N, 0.25 N, 0.35 N and 0.5 N. The expression of mediators that are involved in bone remodeling at CS and TS was analyzed using a Real-Time PCR. The data revealed that a force of 0.35 N promoted optimal OTM and osteoclast recruitment without root resorption. The levels of TNF-alpha, RANKL, MMP13 and OPG were all altered in CS and TS. Whereas TNF-a and Cathepsin K exhibited elevated levels in CS. RUNX2 and OCN levels were higher in TS. Our results suggest that 0.35 N is the ideal force for OTM in mice and has no side effects. Moreover, the expression of bone remodeling markers differed between the compression and the tension areas, potentially explaining the distinct cellular migration and differentiation patterns in each of these sites. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.
Resumo:
Bone remodeling is affected by mechanical loading and inflammatory mediators, including chemokines. The chemokine (C–C motif) ligand 3 (CCL3) is involved in bone remodeling by binding to C–C chemokine receptors 1 and 5 (CCR1 and CCR5) expressed on osteoclasts and osteoblasts. Our group has previously demonstrated that CCR5 down-regulates mechanical loading-induced bone resorption. Thus, the present study aimed to investigate the role of CCR1 and CCL3 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Our results showed that bone remodeling was significantly decreased in CCL3−/− and CCR1−/− mice and in animals treated with Met-RANTES (an antagonist of CCR5 and CCR1). mRNA levels of receptor activator of nuclear factor kappa-B (RANK), its ligand RANKL, tumor necrosis factor alpha (TNF-α) and RANKL/osteoprotegerin (OPG) ratio were diminished in the periodontium of CCL3−/− mice and in the group treated with Met-RANTES. Met-RANTES treatment also reduced the levels of cathepsin K and metalloproteinase 13 (MMP13). The expression of the osteoblast markers runt-related transcription factor 2 (RUNX2) and periostin was decreased, while osteocalcin (OCN) was augmented in CCL3−/− and Met-RANTES-treated mice. Altogether, these findings show that CCR1 is pivotal for bone remodeling induced by mechanical loading during orthodontic tooth movement and these actions depend, at least in part, on CCL3.
Resumo:
It is known that current trends on bone bioengineering seek ideal scaffolds and explore innovative methods to restore tissue function. In this way, the objective of this study was to evaluate the behavior of anorganic bovine bone as osteoblast carrier in critical-size calvarial defects. MC3T3-E1 osteoblast cells (1x10(5) cells/well) were cultured on granules of anorganic bovine bone in 24-well plates and after 24 h these granules were implanted into rat critical-size calvarial defects (group Biomaterial + Cells). In addition, other groups were established with different fillings of the defect: Blood Clot (negative control); Autogenous Bone (positive control); Biomaterial (only granules) and Cells (only MC3T3-E1 cells). After 30 days, the animals were euthanized and the calvaria were technically processed in order to allow histological and morphometric analysis. It was possible to detect blood vessels, connective tissue and newly formed bone in all groups. Particularly in the Biomaterial + Cells group, it was possible to observe a profile of biological events between the positive control group (autogenous bone) and the group in which only anorganic bovine granules were implanted. Altogether, the results of the present study showed that granules of anorganic bovine bone can be used as carrier to osteoblasts and that adding growth factors at the moment of implantation should maximize these results.