7 resultados para structural fire engineering
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper reports the synthesis of Eu-doped hydroxyapatite (HA:Eu) resulting in particles with nanorod diameters from 9 to 26 nm using the microwave hydrothermal method (HTMW). Eu3+ ions were used as a marker in the HA network by basic hydrolysis followed by the HTMW treatment. The crystalline HA:Eu nanorod nature in a short-range order was detected by photoluminescence (PL) measurements from Eu3+ emission into the HA matrix. Thus, was possible to verify that HA crystallization is favored in a short structural order when the HTMW treatment time was increased from 0 to 40 min and that the Eu3+ substitution in the HA lattice is site-selective. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Lignin is a macromolecule frequently obtained as residue during technological processing of biomass. Modifications in chemical structure of lignin generate valuable products, some with particular and unique characteristics. One of the available methods for modification of industrial lignin is oxidation by hydrogen peroxide. In this work, we conducted systematic studies of the oxidation process that were carried out at various pHs and oxidizing agent concentrations. Biophysical, biochemical, structural properties of the oxidized lignin were analyzed by UV spectrophotometry, Fourier transform infrared spectroscopy, scanning electron microscopy and small angle X-ray scattering. Our results reveal that lignin oxidized with 9.1% H(2)O(2) (m/v) at pH 13.3 has the highest fragmentation, oxidation degree and stability. Although this processing condition might be considered quite severe, we have concluded that the stability of the obtained oxidized lignin was greatly increased. Therefore, the identified processing conditions of oxidation may be of practical interest for industrial applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Herein, we demonstrate the physical and chemical characterizations of the supramolecular complex formed between beta-cyclodextrin (beta CD) and bradykinin potentiating nonapeptide (BPP9a), an endogenous toxin found in Bothrops jararaca. Circular dichroism results indicate a conformational change in the BPP9a secondary structure upon its complexation with beta CD. Nuclear magnetic resonance results, mainly from NOESY experiments, and theoretical calculations showed a favorable interaction between the tryptophan residue of BPP9a and the beta CD cavity. Thermodynamic inclusion parameters were investigated by isothermal titration calorimetry, demonstrating that beta CD/BPP9a complex formation is an exothermic process that results in a reduction in entropy. Additionally, in vitro degradation study of BPP9a against trypsin (37 degrees C, pH 7.2) showed higher stability of peptide in presence of beta CD. This beta CD/BPP9a complex, which presents new chemical properties arising from the peptide inclusion process, may be useful as an antihypertensive drug in oral pharmaceutical formulations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The transient and equilibrium properties of dynamics unfolding in complex systems can depend critically on specific topological features of the underlying interconnections. In this work, we investigate such a relationship with respect to the integrate-and-fire dynamics emanating from a source node and an extended network model that allows control of the small-world feature as well as the length of the long-range connections. A systematic approach to investigate the local and global correlations between structural and dynamical features of the networks was adopted that involved extensive simulations (one and a half million cases) so as to obtain two-dimensional correlation maps. Smooth, but diverse surfaces of correlation values were obtained in all cases. Regarding the global cases, it has been verified that the onset avalanche time (but not its intensity) can be accurately predicted from the structural features within specific regions of the map (i.e. networks with specific structural properties). The analysis at local level revealed that the dynamical features before the avalanches can also be accurately predicted from structural features. This is not possible for the dynamical features after the avalanches take place. This is so because the overall topology of the network predominates over the local topology around the source at the stationary state.
Resumo:
In this paper, the effects of uncertainty and expected costs of failure on optimum structural design are investigated, by comparing three distinct formulations of structural optimization problems. Deterministic Design Optimization (DDO) allows one the find the shape or configuration of a structure that is optimum in terms of mechanics, but the formulation grossly neglects parameter uncertainty and its effects on structural safety. Reliability-based Design Optimization (RBDO) has emerged as an alternative to properly model the safety-under-uncertainty part of the problem. With RBDO, one can ensure that a minimum (and measurable) level of safety is achieved by the optimum structure. However, results are dependent on the failure probabilities used as constraints in the analysis. Risk optimization (RO) increases the scope of the problem by addressing the compromising goals of economy and safety. This is accomplished by quantifying the monetary consequences of failure, as well as the costs associated with construction, operation and maintenance. RO yields the optimum topology and the optimum point of balance between economy and safety. Results are compared for some example problems. The broader RO solution is found first, and optimum results are used as constraints in DDO and RBDO. Results show that even when optimum safety coefficients are used as constraints in DDO, the formulation leads to configurations which respect these design constraints, reduce manufacturing costs but increase total expected costs (including expected costs of failure). When (optimum) system failure probability is used as a constraint in RBDO, this solution also reduces manufacturing costs but by increasing total expected costs. This happens when the costs associated with different failure modes are distinct. Hence, a general equivalence between the formulations cannot be established. Optimum structural design considering expected costs of failure cannot be controlled solely by safety factors nor by failure probability constraints, but will depend on actual structural configuration. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Solution of structural reliability problems by the First Order method require optimization algorithms to find the smallest distance between a limit state function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown to be efficient but not robust, as it fails to converge for a significant number of problems. On the other hand, recent developments in general (augmented Lagrangian) optimization techniques have not been tested in aplication to structural reliability problems. In the present article, three new optimization algorithms for structural reliability analysis are presented. One algorithm is based on the HLRF, but uses a new differentiable merit function with Wolfe conditions to select step length in linear search. It is shown in the article that, under certain assumptions, the proposed algorithm generates a sequence that converges to the local minimizer of the problem. Two new augmented Lagrangian methods are also presented, which use quadratic penalties to solve nonlinear problems with equality constraints. Performance and robustness of the new algorithms is compared to the classic augmented Lagrangian method, to HLRF and to the improved HLRF (iHLRF) algorithms, in the solution of 25 benchmark problems from the literature. The new proposed HLRF algorithm is shown to be more robust than HLRF or iHLRF, and as efficient as the iHLRF algorithm. The two augmented Lagrangian methods proposed herein are shown to be more robust and more efficient than the classical augmented Lagrangian method.
Resumo:
Background Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform–near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases’ ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level.