18 resultados para stock order flow model

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabasi-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q > 2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the results from the temporal and spectral analysis of an XMMNewton observation of Nova Centauri 1986 (V842 Cen). We detect a period at 3.51 +/- 0.4 h in the EPIC data and at 4.0 +/- 0.8 h in the Optical Monitor (OM) data. The X-ray spectrum is consistent with the emission from an absorbed thin thermal plasma with a temperature distribution given by an isobaric cooling flow. The maximum temperature of the cooling flow model is keV. Such a high temperature can be reached in a shocked region and, given the periodicity detected, most likely arises in a magnetically channelled accretion flow characteristic of intermediate polars. The pulsed fraction of the 3.51-h modulation decreases with energy as observed in the X-ray light curves of magnetic cataclysmic variables, possibly due either to occultation of the accretion column by the white dwarf body or phase-dependent to absorption. We do not find the 57-s white dwarf spin period, with a pulse amplitude of 4 mmag, reported by Woudt et al. in either the OM data, which are sensitive to pulse amplitudes ?0.03 mag, or the EPIC data, sensitive to pulse fractions p? 14 +/- 2 per cent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic ZrO2 center dot nH(2)O was used for phosphate removal from aqueous solution. The optimum adsorbent dose obtained for phosphate adsorption on to hydrous zirconium oxide was 0.1 g. The kinetic process was described very well by a pseudo-second-order rate model. The phosphate adsorption tended to increase with the decrease in pH. The adsorption capacity increased from 61 to 66 mg g(-1) when the temperature was increased from 298 to 338 K. A phosphate desorption of approximately 74% was obtained using water at pH 12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous work, succinylated sugarcane bagasse (SCB 2) was prepared from sugarcane bagasse (B) using succinic anhydride as modifying agent. In this work the adsorption of cationic dyes onto SCB 2 from aqueous solutions was investigated. Methylene blue, MB, and gentian violet, GV, were selected as adsorbates. The capacity of SCB 2 to adsorb MB and GV from aqueous single dye solutions was evaluated at different contact times, pH, and initial adsorbent concentration. According to the obtained results, the adsorption processes could be described by the pseudo-second-order kinetic model. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacities for MB and GV onto SCB 2 were found to be 478.5 and 1273.2 mg/g, respectively. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assessment of the thermal process impact in terms of food safety and quality is of great importance for process evaluation and design. This can be accomplished from the analysis of the residence time and temperature distributions coupled with the kinetics of thermal change, or from the use of a proper time-temperature integrator (TTI) as indicator of safety and quality. The objective of this work was to develop and test enzymic TTIs with rapid detection for the evaluation of continuous HTST pasteurization processes (70-85 degrees C, 10-60 s) of low-viscosity liquid foods, such as milk and juices. Enzymes peroxidase, lactoperoxidase and alkaline phosphatase in phosphate buffer were tested and activity was determined with commercial reflectometric strips. Discontinuous thermal treatments at various time-temperature combinations were performed in order to adjust a first order kinetic model of a two-component system. The measured time-temperature history was considered instead of assuming isothermal conditions. Experiments with slow heating and cooling were used to validate the adjusted model. Only the alkaline phosphatase TTI showed potential to be used for the evaluation of pasteurization processes. The choice was based on the obtained z-values of the thermostable and thermolabile fractions, on the cost and on the validation tests. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen removal coupled with sulfide oxidation has potential for the treatment of effluents from anaerobic reactors because they contain sulfide, which can be used as an endogenous electron donor for denitrification. This work evaluated the intrinsic kinetics of sulfide-oxidizing autotrophic denitrification via nitrate and nitrite in systems containing attached cells. Differential reactors were fed with nitrified synthetic domestic sewage and different sulfide concentrations. The intrinsic kinetic parameters of nitrogen removal were determined when the mass transfer resistance was negligible. This bioprocess could be described by a half-order kinetic model for biofilms. The half-order kinetic coefficients ranged from 0.425 to 0.658 mg N-1/2 L-1/2 h(-1) for denitrification via nitrite and from 0.190 to 0.609 mg N-1/2 L-1/2 h(-1) for denitrification via nitrate. In this latter, the lower value was due to the use of electrons donated from intermediary sulfur compounds whose formation and subsequent consumption were detected. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural properties of model membranes, such as lipid vesicles, may be investigated through the addition of fluorescent probes. After incorporation, the fluorescent molecules are excited with linearly polarized light and the fluorescence emission is depolarized due to translational as well as rotational diffusion during the lifetime of the excited state. The monitoring of emitted light is undertaken through the technique of time-resolved fluorescence: the intensity of the emitted light informs on fluorescence decay times, and the decay of the components of the emitted light yield rotational correlation times which inform on the fluidity of the medium. The fluorescent molecule DPH, of uniaxial symmetry, is rather hydrophobic and has collinear transition and emission moments. It has been used frequently as a probe for the monitoring of the fluidity of the lipid bilayer along the phase transition of the chains. The interpretation of experimental data requires models for localization of fluorescent molecules as well as for possible restrictions on their movement. In this study, we develop calculations for two models for uniaxial diffusion of fluorescent molecules, such as DPH, suggested in several articles in the literature. A zeroth order test model consists of a free randomly rotating dipole in a homogeneous solution, and serves as the basis for the study of the diffusion of models in anisotropic media. In the second model, we consider random rotations of emitting dipoles distributed within cones with their axes perpendicular to the vesicle spherical geometry. In the third model, the dipole rotates in the plane of the of bilayer spherical geometry, within a movement that might occur between the monolayers forming the bilayer. For each of the models analysed, two methods are used by us in order to analyse the rotational diffusion: (I) solution of the corresponding rotational diffusion equation for a single molecule, taking into account the boundary conditions imposed by the models, for the probability of the fluorescent molecule to be found with a given configuration at time t. Considering the distribution of molecules in the geometry proposed, we obtain the analytical expression for the fluorescence anisotropy, except for the cone geometry, for which the solution is obtained numerically; (II) numerical simulations of a restricted rotational random walk in the two geometries corresponding to the two models. The latter method may be very useful in the cases of low-symmetry geometries or of composed geometries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several experimental studies of pulmonary emphysema using animal models have been described in the literature. However, only a few of these studies have focused on the assessment of ergometric function as a non-invasive technique to validate the methodology used for induction of experimental emphysema. Additionally, functional assessments of emphysema are rarely correlated with morphological pulmonary abnormalities caused by induced emphysema. The present study aimed to evaluate the effects of elastase administered by tracheal puncture on pulmonary parenchyma and their corresponding functional impairment. This was evaluated by measuring exercise capacity in C57Bl/6 mice in order to establish a reproducible and safe methodology of inducing experimental emphysema. Thirty six mice underwent ergometric tests before and 28 days after elastase administration. Pancreatic porcine elastase solution was administered by tracheal puncture, which resulted in a significantly decreased exercise capacity, shown by a shorter distance run (-30.5%) and a lower mean velocity (-15%), as well as in failure to increase the elimination of carbon dioxide. The mean linear intercept increased significantly by 50% in tracheal elastase administration. In conclusion, application of elastase by tracheal function in C57Bl/6 induces emphysema, as validated by morphometric analyses, and resulted in a significantly lower exercise capacity, while resulting in a low mortality rate. (C) 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use an infinite-range Maier-Saupe model, with two sets of local quadrupolar variables and restricted orientations, to investigate the global phase diagram of a coupled system of two nematic subsystems. The free energy and the equations of state are exactly calculated by standard techniques of statistical mechanics. The nematic-isotropic transition temperature of system A increases with both the interaction energy among mesogens of system B, and the two-subsystem coupling J. This enhancement of the nematic phase is manifested in a global phase diagram in terms of the interaction parameters and the temperature T. We make some comments on the connections of these results with experimental findings for a system of diluted ferroelectric nanoparticles embedded in a nematic liquid-crystalline environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports results for directed flow v(1) and elliptic flow v(2) of charged particles in Cu + Cu collisions at root s(NN) = 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4-GeV Cu + Cu collisions the prior observation that v1 is independent of the system size at 62.4 and 200 GeV and also extend the scaling of v(1) with eta/y(beam) to this system. The measured v(2)(p(T)) in Cu + Cu collisions is similar for root s(NN) throughout the range 22.4 to 200 GeV. We also report a comparison with results from transport model (ultrarelativistic quantum molecular dynamics and multiphase transport model) calculations. The model results do not agree quantitatively with the measured v(1)(eta), v(2)(p(T)), and v(2)(eta).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The flow around circular smooth fixed cylinder in a large range of Reynolds numbers is considered in this paper. In order to investigate this canonical case, we perform CFD calculations and apply verification & validation (V&V) procedures to draw conclusions regarding numerical error and, afterwards, assess the modeling errors and capabilities of this (U)RANS method to solve the problem. Eight Reynolds numbers between Re = 10 and Re 5 x 10(5) will be presented with, at least, four geometrically similar grids and five discretization in time for each case (when unsteady), together with strict control of iterative and round-off errors, allowing a consistent verification analysis with uncertainty estimation. Two-dimensional RANS, steady or unsteady, laminar or turbulent calculations are performed. The original 1994 k - omega SST turbulence model by Menter is used to model turbulence. The validation procedure is performed by comparing the numerical results with an extensive set of experimental results compiled from the literature. [DOI: 10.1115/1.4007571]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental flow boiling heat transfer results are presented for horizontal 1.0 and 2.2 mm I. D. (internal diameter) stainless steel tubes for tests with R1234ze(E), a new refrigerant developed as a substitute for R134a with a much lower global warming potential (GWP). The experiments were performed for these two tube diameters in order to investigate a possible transition between macro and microscale flow boiling behavior. The experimental campaign includes mass velocities ranging from 50 to 1500 kg/m(2) s, heat fluxes from 10 to 300 kW/m(2), exit saturation temperatures of 25, 31 and 35 degrees C, vapor qualities from 0.05 to 0.99 and heated lengths of 180 mm and 361 mm. Flow pattern characterization was performed using high speed videos. Heat transfer coefficient, critical heat flux and flow pattern data were obtained. R1234ze(E) demonstrated similar thermal performance to R134a data when running at similar conditions. [DOI: 10.1115/1.4004933]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A systematic study is presented for centrality, transverse momentum (p(T)), and pseudorapidity (eta) dependence of the inclusive charged hadron elliptic flow (v(2)) at midrapidity (vertical bar eta vertical bar < 1.0) in Au + Au collisions at root s(NN) = 7.7, 11.5, 19.6, 27, and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and four-particle cumulants (v(2){4}), are presented to investigate nonflow correlations and v(2) fluctuations. We observe that the difference between v(2){2} and v(2){4} is smaller at the lower collision energies. Values of v(2), scaled by the initial coordinate space eccentricity, v(2)/epsilon, as a function of p(T) are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider (root s(NN) = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at root s(NN) = 2.76 TeV). The v(2)(pT) values for fixed pT rise with increasing collision energy within the pT range studied (<2 GeV/c). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of v(2)(pT). We also compare the v(2) results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at beam energy scan energies are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Magnetic hyperthermia is currently a clinical therapy approved in the European Union for treatment of tumor cells, and uses magnetic nanoparticles (MNPs) under time-varying magnetic fields (TVMFs). The same basic principle seems promising against trypanosomatids causing Chagas disease and sleeping sickness, given that the therapeutic drugs available have severe side effects and that there are drug-resistant strains. However, no applications of this strategy against protozoan-induced diseases have been reported so far. In the present study, Crithidia fasciculata, a widely used model for therapeutic strategies against pathogenic trypanosomatids, was targeted with Fe3O4 MNPs in order to provoke cell death remotely using TVMFs. Methods: Iron oxide MNPs with average diameters of approximately 30 nm were synthesized by precipitation of FeSO4 in basic medium. The MNPs were added to C. fasciculata choanomastigotes in the exponential phase and incubated overnight, removing excess MNPs using a DEAE-cellulose resin column. The amount of MNPs uploaded per cell was determined by magnetic measurement. The cells bearing MNPs were submitted to TVMFs using a homemade AC field applicator (f = 249 kHz, H = 13 kA/m), and the temperature variation during the experiments was measured. Scanning electron microscopy was used to assess morphological changes after the TVMF experiments. Cell viability was analyzed using an MTT colorimetric assay and flow cytometry. Results: MNPs were incorporated into the cells, with no noticeable cytotoxicity. When a TVMF was applied to cells bearing MNPs, massive cell death was induced via a nonapoptotic mechanism. No effects were observed by applying TVMF to control cells not loaded with MNPs. No macroscopic rise in temperature was observed in the extracellular medium during the experiments. Conclusion: As a proof of principle, these data indicate that intracellular hyperthermia is a suitable technology to induce death of protozoan parasites bearing MNPs. These findings expand the possibilities for new therapeutic strategies combating parasitic infection.