4 resultados para step-up
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The human luteinizing hormone/chorionic gonadotropin receptor (LHCGR) plays a fundamental role in male and female reproductive physiology. Over the past 15 years, several homozygous or compound heterozygous loss-of-function mutations in the LHCGR gene have been described in males and females. In genetic males, mutations in LHCGR were associated with distinct degrees of impairment in pre- and postnatal testosterone secretion resulting in a phenotypic spectrum. Patients with the severe form of LH resistance have predominantly female external genitalia and absence of secondary sex differentiation at puberty. Patients with milder forms have predominantly male external genitalia with micropenis and/or hypospadias or only infertility without ambiguity. The undermasculization is associated with low basal, as well as human CG-stimulated, testosterone levels and elevated LH levels after pubertal age, without abnormal step-up in testosterone biosynthesis precursors. The testes have only slightly reduced size but mature Leydig cells are absent or scarce (Leydig cell hypoplasia). Genetic females with inactivating LHCGR mutations have female external genitalia, spontaneous breast and pubic hair development at puberty, and normal or late menarche followed by oligoamenorrhea and infertility. Estradiol and progesterone levels are normal for the early to midfollicular phase, but do not reach ovulatory or luteal phase levels. Serum LH levels are high whereas follicle-stimulating hormone levels are normal or only slightly increased. Pelvic ultrasound has demonstrated a small or normal uterus and normal or enlarged ovaries with cysts. The inactivating mutations of the LHCGR have provided important insights into distinct physiological roles of LH in reproduction of both sexes.
Resumo:
The aim of this study was to evaluate the performance and blood parameters of feedlot Nellore cattle fed increasing doses of ricinoleic acid (RA) in the diet. Ninety-six Nellore steers divided into 12 groups of 8 animals were used. The animals were randomly assigned to four treatments: 0, 1, 2, or 4 g of RA/animal/day, with three replicates per treatment. The experimental period consisted of 84 days divided into three 28-day periods preceded by three step-up diets. A quadratic effect was found for average daily gain and final body weight, as well as for leukocyte and lymphocyte counts, and for urea and blood urea nitrogen. A linear effect was observed for albumin, alkaline phosphatase, and gamma glutamyl transferase. The inclusion of 2 g of RA daily improved the performance of feedlot Nellore steers.
Resumo:
Purpose: To evaluate whether Nd:YAG laser irradiation of etched and unetched dentin through an uncured adhesive affected the microtensile bond strength (pTBS). Materials and Methods: Flat dentin surfaces were created in 19 extracted human third molars. Adper Single Bond (SB) adhesive was applied over etched (groups 1 to 3) or unetched dentin (groups 4 to 6). The dentin was then irradiated with a Nd:YAG laser through the uncured adhesive, using 0.75 or 1 W power settings, except for the control groups (groups 1 and 4). The adhesive was light cured and composite crowns were built up. After 24 h, the teeth were sectioned into beams, with cross-sectional areas of 0.49 mm(2), and were stressed under tension. Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 5%). Dentin surfaces of fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). Results: Acid etching, laser irradiation, and their interaction significantly affected bonding (p < 0.05). Laser irradiation did not improve bonding of etched dentin to resin (p > 0.05). However, higher pTBS means were found on unetched lased dentin (groups 5 and 6), but only in comparison to group 4, where neither lasing nor etching was performed. Groups 4 to 6 showed the lowest pTBS means among all groups tested (p < 0.05). Laser irradiation did not change the characteristics of the hybrid layers created, while solidification globules were observed on lased dentin surfaces under SEM. Conclusion: Laser irradiation of dentin through the uncured adhesive did not significantly improve the pTBS in comparison to the suggested manufacturer's technique.
Resumo:
The Nd3+-Yb3+ couple was investigated in fluoroindogallate glasses using optical spectroscopy to elucidate the energy transfer mechanisms involved in the downconversion (DC) process. Upon excitation of a Nd3+ ion by an ultraviolet photon, DC through a three-step energy transfer process occurs, in which the energy of the ultraviolet photon absorbed by the Nd3+ ion is converted into three infrared photons emitted by Yb3+ ions, i.e. quantum cutting (QC). In addition, with excitation in the visible, our results confirm that the DC process occurs through a one-step energy transfer process, in which the energy of a visible photon absorbed by the Nd3+ ion is converted into only one infrared photon emitted by an Yb3+ ion. Time-resolved measurements enabled the estimation of the efficiencies of the cross-relaxation processes between Nd3+ and Yb3+ ions.