75 resultados para stellar winds
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In the past few decades detailed observations of radio and X-ray emission from massive binary systems revealed a whole new physics present in such systems. Both thermal and non-thermal components of this emission indicate that most of the radiation at these bands originates in shocks. O and B-type stars and WolfRayet (WR) stars present supersonic and massive winds that, when colliding, emit largely due to the freefree radiation. The non-thermal radio and X-ray emissions are due to synchrotron and inverse Compton processes, respectively. In this case, magnetic fields are expected to play an important role in the emission distribution. In the past few years the modelling of the freefree and synchrotron emissions from massive binary systems have been based on purely hydrodynamical simulations, and ad hoc assumptions regarding the distribution of magnetic energy and the field geometry. In this work we provide the first full magnetohydrodynamic numerical simulations of windwind collision in massive binary systems. We study the freefree emission characterizing its dependence on the stellar and orbital parameters. We also study self-consistently the evolution of the magnetic field at the shock region, obtaining also the synchrotron energy distribution integrated along different lines of sight. We show that the magnetic field in the shocks is larger than that obtained when the proportionality between B and the plasma density is assumed. Also, we show that the role of the synchrotron emission relative to the total radio emission has been underestimated.
Resumo:
The response of the Sao Paulo Continental Shelf (SPCS) to synoptic wind forcing has been analyzed. Two different methods are used for this purpose, one based on hydrographic data, bottom topography, and geographical characteristics, and a second on analyzing currentmeter data directly and using empirical orthogonal functions. Both methods show similar results for an essentially barotropic shelf. The SPCS response in the subinertial frequency band appears to be trapped on the continental shelf. Numerical experiments have also been carried out showing results that qualitatively agree with the observations, including the velocity component parallel to the coastline.
Resumo:
The Rio de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28,S) during austral winter and 32 degrees S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We present a photometric catalogue of compact groups of galaxies (p2MCGs) automatically extracted from the Two-Micron All Sky Survey (2MASS) extended source catalogue. A total of 262 p2MCGs are identified, following the criteria defined by Hickson, of which 230 survive visual inspection (given occasional galaxy fragmentation and blends in the 2MASS parent catalogue). Only one quarter of these 230 groups were previously known compact groups (CGs). Among the 144 p2MCGs that have all their galaxies with known redshifts, 85 (59?per cent) have four or more accordant galaxies. This v2MCG sample of velocity-filtered p2MCGs constitutes the largest sample of CGs (with N = 4) catalogued to date, with both well-defined selection criteria and velocity filtering, and is the first CG sample selected by stellar mass. It is fairly complete up to Kgroup similar to 9 and radial velocity of similar to 6000?km?s-1. We compared the properties of the 78 v2MCGs with median velocities greater than 3000?km?s-1 with the properties of other CG samples, as well as those (mvCGs) extracted from the semi-analytical model (SAM) of Guo et al. run on the high-resolution Millennium-II simulation. This mvCG sample is similar (i.e. with 2/3 of physically dense CGs) to those we had previously extracted on three other SAMs run on the Millennium simulation with 125 times worse spatial and mass resolutions. The space density of v2MCGs within 6000?km?s-1 is 8.0 X 10-5?h3?Mpc-3, i.e. four times that of the Hickson sample [Hickson Compact Group (HCG)] up to the same distance and with the same criteria used in this work, but still 40?per cent less than that of mvCGs. The v2MCG constitutes the first group catalogue to show a statistically large firstsecond ranked galaxy magnitude gap according to TremaineRichstone statistics, as expected if the first ranked group members tend to be the products of galaxy mergers, and as confirmed in the mvCGs. The v2MCG is also the first observed sample to show that first-ranked galaxies tend to be centrally located, again consistent with the predictions obtained from mvCGs. We found no significant correlation of group apparent elongation and velocity dispersion in the quartets among the v2MCGs, and the velocity dispersions of apparently round quartets are not significantly larger than those of chain-like ones, in contrast to what has been previously reported in HCGs. By virtue of its automatic selection with the popular Hickson criteria, its size, its selection on stellar mass, and its statistical signs of mergers and centrally located brightest galaxies, the v2MCG catalogue appears to be the laboratory of choice to study physically dense groups of four or more galaxies of comparable luminosity.
Resumo:
We present results from an analysis of stellar population parameters for 7132 galaxies in the 6dF Galaxy Survey Fundamental Plane (FP) sample. We bin the galaxies along the axes, v1, v2 and v3, of the tri-variate Gaussian to which we have fitted the galaxy distribution in effective radius, surface brightness and central velocity dispersion (FP space), and compute median values of stellar age, [Fe/H], [Z/H] and [a/Fe]. We determine the directions of the vectors in FP space along which each of the binned stellar population parameters vary most strongly. In contrast to previous work, we find stellar population trends not just with velocity dispersion and FP residual, but with radius and surface brightness as well. The most remarkable finding is that the stellar population parameters vary through the plane (v1 direction) and across the plane (v3 direction), but show no variation at all along the plane (v2 direction). The v2 direction in FP space roughly corresponds to luminosity density. We interpret a galaxys position along this vector as being closely tied to its merger history, such that early-type galaxies with lower luminosity density are more likely to have undergone major mergers. This conclusion is reinforced by an examination of the simulations of Kobayashi, which show clear trends of merger history with v2.
Resumo:
We report a study of the stellar content of the near-infrared (NIR) cluster [DBS2003] 157 embedded in the extended H ii region GAL 331.31-00.34, which is associated with the IRAS source 16085-5138. JHK photometry was carried out in order to identify potential ionizing candidates, and the follow-up NIR spectroscopy allowed the spectral classification of some sources, including two O-type stars. A combination of NIR photometry and spectroscopy data was used to obtain the distance of these two stars, with the method of spectroscopic parallax: IRS 298 (O6 V, 3.35 +/- 0.61 kpc) and IRS 339 (O9 V, 3.24 +/- 0.56 kpc). Adopting the average distance of 3.29 +/- 0.58 kpc and comparing the Lyman continuum luminosity of these stars with that required to account for the radio continuum flux of the H ii region, we conclude that these two stars are the ionizing sources of GAL 331.31-00.34. Young stellar objects (YSOs) were searched by using our NIR photometry and mid-infrared (MIR) data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) survey. The analysis of NIR and MIR colourcolour diagrams resulted in 47 YSO candidates. The GLIMPSE counterpart of IRAS 16085-5138, which presents IRAS colour indices compatible with an ultracompact H ii region, has been identified. The analysis of its spectral energy distribution between 2 and m revealed that this source shows a spectral index a= 3.6 between 2 and m, which is typical of a YSO immersed in a protostellar envelope. Lower limits to the bolometric luminosity and the mass of the embedded protostar have been estimated as L= 7.7 x 10(3) L? and M= 10 M?, respectively, which correspond to a B0B1 V zero-age main sequence star.
Resumo:
Aims. Several embedded clusters are found in the Galaxy. Depending on the formation scenario, most of them can evolve to unbounded groups that are dissolved within 10 Myr to 20 Myr. A systematic study of young stellar clusters that show distinct characteristics provides interesting information on the evolutionary phases during the pre-main sequence. To identify and to understand these phases we performed a comparative study of 21 young stellar clusters. Methods. Near-infrared data from 2MASS were used to determine the structural and fundamental parameters based on surface stellar density maps, radial density profile, and colour-magnitude diagrams. The cluster members were selected according to their membership probability, which is based on the statistical comparison with the cluster proper motion. Additional members were selected on the basis of a decontamination procedure that was adopted to distinguish field stars found in the direction of the cluster area. Results. We obtained age and mass distributions by comparing pre-main sequence models with the position of cluster members in the colour-magnitude diagram. The mean age of our sample is similar to 5 Myr, where 57% of the objects is found in the 4-10 Myr range of age, while 43% is <4 Myr old. Their low E(B - V) indicate that the members are not suffering high extinction (AV <1 mag), which means they are more likely young stellar groups than embedded clusters. Relations between structural and fundamental parameters were used to verify differences and similarities that could be found among the clusters. The parameters of most of the objects show the same trends or correlations. Comparisons with other young clusters show similar relations among mass, radius, and density. Our sample tends to have larger radius and lower volumetric density than embedded clusters. These differences are compatible with the mean age of our sample, which we consider intermediate between the embedded and the exposed phases of the stellar clusters evolution.
Resumo:
Be stars are known to be fast rotators. At high rotation rates a profound modification of the radiation field reaching the circumstellar environment is expected. The origin of this modification is the decrease of the effective gravity on stellar surface leading to the stellar geometrical flattening and the gravity darkening effect predicted by Von Zeipel. Making use of the radiative transfer code HDUST we discuss the consequences of such stellar rotation on the structure of Be star disks based on the Viscous Decretion Disk model. Observational predictions are also made, as SED, IR-excess and Hydrogen line profiles. The modified illumination of the circumstellar disk generates significant changes in these quantities. Ascertaining these changes is useful to set some of the fundamental parameters of the Be system and to unveil the role of stellar rotation over the stellar evolution.
Resumo:
Context. To date, the CoRoT space mission has produced more than 124 471 light curves. Classifying these curves in terms of unambiguous variab ility behavior is mandatory for obtaining an unbi ased statistical view on th eir controlling root-causes. Aims. The present study provides an overview of semi-sinusoidal light curves observed by the CoRoT exo-field CCDs. Methods. We selected a sample of 4206 light curves presenting well-defined semi-si nusoidal signatures. Th e variability periods were computed based on Lomb-Scargle periodograms, harmonic fits, and visual inspection. Results. Color–period diagrams for the present sample show the trend of an increase of the variability periods as long as the stars evolve. This evolutionary behavior is also noticed when comparing the period distribution in the Galactic center and anti-center directions. These aspect s indicate a compatibility with stellar rotation, although more inform ation is needed to confirm their root- causes. Considering this possi bility, we identified a subset of th ree Sun-like candidates by their photometric peri od. Finally, the variability period versus color diagr am behavior was found to be highly depe ndent on the reddening correction.
Resumo:
We analyse the secular effects of a long-lived Galactic spiral structure on the stellar orbits with mean radii close to the corotation resonance. By test-particle simulations and different spiral potential models with parameters constrained on observations, we verified the formation of a minimum with amplitude ∼30–40 per cent of the background disc stellar density at corotation. Such a minimum is formed by the secular angular momentum transfer between stars and the spiral density wave on both sides of corotation. We demonstrate that the secular loss (gain) of angular momentum and decrease (increase) of mean orbital radius of stars just inside (outside) corotation can counterbalance the opposite trend of exchange of angular momentum shown by stars orbiting the librational points L4/5 at the corotation circle. Such secular processes actually allow steady spiral waves to promote radial migration across corotation. We propose some pieces of observational evidence for the minimum stellar density in the Galactic disc, such as its direct relation to the minimum in the observed rotation curve of the Galaxy at the radius r ∼ 9 kpc (for R0 = 7.5 kpc), as well as its association with a minimum in the distribution of Galactic radii of a sample of open clusters older than 1Gyr. The closeness of the solar orbit adius to the corotation resonance implies that the solar orbit lies inside a ring of minimum surface density (stellar + gas). This also implies a correction to larger values for the estimated total mass of the Galactic disc, and consequently, a greater contribution of the disc componente to the inner rotation curve of the Galaxy.
Resumo:
; High-resolution grain size analyses of three AMS (14)C-dated cores from the Southeastern Brazilian shelf provide a detailed record of mid- to late-Holocene environmental changes in the Southwestern Atlantic Margin. The cores exhibit millennial variability that we associate with the previously described southward shift of the Inter Tropical Convergence Zone (ITCZ) average latitudinal position over the South American continent during the Holocene climatic maximum. This generated changes in the wind-driven current system of the SW Atlantic margin and modified the grain size characteristics of the sediments deposited there. Centennial variations in the grain size are associated with a previously described late-Holocene enhancement of the El Nino-Southern Oscillation (ENSO) amplitude, which led to stronger NNE trade winds off eastern Brazil, favouring SW transport of sediments from the Paraiba do Sul River. This is recorded in a core from off Cabo Frio as a coarsening trend from 3000 cal. BP onwards. The ENSO enhancement also caused changes in precipitation and wind pattern in southern Brazil, allowing high discharge events and northward extensions of the low-saline water plume from Rio de la Plata. We propose that this resulted in a net increase in northward alongshore transport of fine sediments, seen as a prominent fine-shift at 2000 cal. BP in a core from similar to 24 degrees S on the Brazilian shelf. Wavelet-and spectral analysis of the sortable silt records show a significant similar to 1000-yr periodicity, which we attribute to solar forcing. If correct, this is one of the first indications of solar forcing of this timescale on the Southwestern Atlantic margin.
Resumo:
This paper provides a description of the wave climate off the Brazilian coast based on an eleven-year time series (Jan/1997-Dec/2007) obtained from the NWW3 operational model hindcast reanalysis. Information about wave climate in Brazilian waters is very scarce and mainly based on occasional short-term observations, the present analysis being the first covering such temporal and spatial scales. To define the wave climate, six sectors were defined and analyzed along the Brazilian shelf-break: South (W1), Southeast (W2), Central (W3), East (W4), Northeast (W5) and North (W6). W1, W2 and W3 wave regimes are determined by the South Atlantic High (SAH) and the passage of synoptic cold fronts; W4, W5 and W6 are controlled by the Intertropical Convergence Zone (ITCZ) and its meridional oscillation. The most energetic waves are from the S, generated by the strong winds associated to the passage of cold fronts, which mainly affect the southern region. Wave power presents a decrease in energy levels from south to north, with its annual variation showing that the winter months are the most energetic in W1 to W4, while in W5 and W6 the most energetic conditions occur during the austral summer. The information presented here provides boundary conditions for studies related to coastal processes, fundamental for a better understanding of the Brazilian coastal zone.
Resumo:
In this paper we use a coupled ocean-atmosphere model to investigate the impact of the interruption of Agulhas leakage of Indian ocean water on the tropical Atlantic, a region where strong coupled ocean-atmosphere interactions occur. The effect of a shut down of leakage of Indian ocean water is isolated from the effect of a collapse of the MOC. In our experiments, the ocean model is forced with boundary conditions in the southeastern corner of the domain that correspond to no interocean exchange of Indian ocean water into the Atlantic. The southern boundary condition is taken from the Levitus data and ensures an MOC in the Atlantic. Within this configuration, instead of warm and salty Indian ocean water temperature (cold) and salinity (fresh) anomalies of southern ocean origin propagate into the South Atlantic and eventually reach the equatorial region, mainly in the thermocline. This set up mimics the closure of the ""warm water path"" in favor of the ""cold water path"". As part of the atmospheric response, there is a northward shift of the intertropical convergence zone (ITCZ). The changes in trade winds lead to reduced Ekman pumping in the equatorial region. This leads to a freshening and warming of the surface waters along the equator. Especially in the Cold Tongue region, the cold and fresh subsurface anomalies do not reach the surface due to the reduced upwelling. The anomaly signals are transported by the equatorial undercurrent and spread away from the equator within the thermocline. Part of the anomaly eventually reaches the Tropical North Atlantic, where it affects the Guinea Dome. Surprisingly, the main effect at the surface is small on the equator and relatively large at the Guinea Dome. In the atmosphere, the northward shift of the ITCZ is associated with a band of negative precipitation anomalies and higher salinities over the Tropical South Atlantic. An important implication of these results is that the modified water characteristics due to a shut down of the Agulhas leakage remain largely unaffected when crossing the equatorial Atlantic and therefore can affect the deepwater formation in the North Atlantic. This supports the hypothesis that the Agulhas leakage is an important source region for climate change and decadal variability of the Atlantic.
Resumo:
Sedimentological and benthic foraminifera analyses carried out on a core (length 4.15 in, collected at 22 degrees 56`31 `` S and 41 degrees 58`48 `` W, at a water depth of 43 in) sampled from the inner shelf of Cabo Frio, southeastern Brazilian continental margin, allowed identification of different hydrodynamic and productivity regimes related to sea-level fluctuations and/or climatic changes, during the last 9.4 ka cal BP. Prior to 7.0 ka cal BP, a less intense hydrodynamic and lower productivity regime occurred at lower sea levels and under drier climatic conditions. Between 7.0 and 5.0 ka cal BP, relatively stronger local oceanic circulation and relatively high productivity were observed, in a scenario of rising sea levels and more humid conditions. From 5.0 to 3.0 ka cal BP, bottom currents weakened and input of nutrients increased, with productivity levels similar to the previous phase at lower sea level and in a drier climate. From 3.0 ka cal BP up to the present, stronger hydrodynamic conditions and a higher productivity regime are linked to the establishment of the upwelling process in Cabo Frio. From 2.5 ka cal BP to the present, upwelling enhancement has been recognized, resulting from the combined action of NE winds and the intensification of the meandering pattern of the Brazil Current (BC). (C) 2008 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
The Community Climate System Model version 3 is used to analyse changes in water mass subduction rates in the South Atlantic Ocean over the 21st century. The model results are first compared to observations over 1950-2000, and shown to be rather good. The subduction rates do not change significantly over the 21st century, but the densities at which water masses form become significantly lighter. The strong westerly winds in this region do not change much, which suggests small changes to the rate at which the Atlantic sector of the Southern Ocean takes up heat and carbon dioxide over the 21st century.