4 resultados para spent zinc manganese dioxide batteries
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The oxygen reduction reaction (ORR) was studied in KOH electrolyte on carbon supported epsilon-manganese dioxide (epsilon-MnO2/C). The epsilon-MnO2/C catalyst was prepared via thermal decomposition of manganese nitrate and carbon powder (Vulcan XC-72) mixtures. X-ray powder diffraction (XRD) measurements were performed in order to determine the crystalline structure of the resulting composite, while energy dispersive X-ray analysis (EDX) was used to evaluate the chemical composition of the synthesized material. The electrochemical studies were conducted using cyclic voltammetry (CV) and quasi-steady state polarization measurements carried out with an ultra thin layer rotating ring/disk electrode (RRDE) configuration. The electrocatalytic results obtained for 20% (w/w) Pt/C (E-TEK Inc., USA) and alpha-MnO2/C for the ORR, considered as one of the most active manganese oxide based catalyst for the ORR in alkaline media, were included for comparison. The RRDE results revealed that the ORR on the MnO2 catalysts proceeds preferentially through the complete 4e(-) reduction pathway via a 2 plus 2e(-) reduction process involving hydrogen peroxide as an intermediate. A benchmark close to the performance of 20% (w/w) Pt/C (E-TEK Inc., USA) was observed for the epsilon-MnO2/C material in the kinetic control region, superior to the performance of alpha-MnO2/C, but a higher amount of HO2- was obtained when epsilon-MnO2/C was used as catalyst. The higher production of hydrogen peroxide on epsilon-MnO2/C was related to the presence of structural defects, typical of this oxide, while the better catalytic performance in the kinetic control region compared to alpha-MnO2/C was related with the higher electrochemical activity for the proton insertion kinetics, which is a structure sensitive process. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: Mossy fiber sprouting (MFS) is a frequent finding following status epilepticus (SE). The present study aimed to test the feasibility of using manganese-enhanced magnetic resonance imaging (MEMRI) to detect MFS in the chronic phase of the well-established pilocarpine (Pilo) rat model of temporal lobe epilepsy (TLE). Methods: To modulate MFS, cycloheximide (CHX), a protein synthesis inhibitor, was coadministered with Pilo in a subgroup of animals. In vivo MEMRI was performed 3 months after induction of SE and compared to the neo-Timm histologic labeling of zinc mossy fiber terminals in the dentate gyrus (DG). Key Findings: Chronically epileptic rats displaying MFS as detected by neo-Timm histology had a hyperintense MEMRI signal in the DG, whereas chronically epileptic animals that did not display MFS had minimal MEMRI signal enhancement compared to nonepileptic control animals. A strong correlation (r = 0.81, p < 0.001) was found between MEMRI signal enhancement and MFS. Significance: This study shows that MEMRI is an attractive noninvasive method for detection of mossy fiber sprouting in vivo and can be used as an evaluation tool in testing therapeutic approaches to manage chronic epilepsy.
Resumo:
Surface properties play an important role in understanding and controlling nanocrystalline materials. The accumulation of dopants on the surface, caused by surface segregation, can therefore significantly affect nanomaterials properties at low doping levels, offering a way to intentionally control nanoparticles features. In this work, we studied the distribution of chromium ions in SnO2 nanoparticles prepared by a liquid precursor route at moderate temperatures (500 degrees C). The powders were characterized by infrared spectroscopy, X-ray diffraction, (scanning) transmission electron microscopy, Electron Energy Loss Spectroscopy, and Mossbauer spectroscopy. We showed that this synthesis method induces a limited solid solution of chromium into SnO2 and a segregation of chromium to the surface. The s-electron density and symmetry of Sn located on the surface were significantly affected by the doping, while Sn located in the bulk remained unchanged. Chromium ions located on the surface and in the bulk showed distinct oxidation states, giving rise to the intense violet color of the nanoparticles suitable for pigment application.
Resumo:
The present study was carried out with the objective of evaluating the effects of feeding dairy cows with organic or inorganic sources of zinc (Zn), copper (Cu) and selenium (Se) on blood concentrations of these minerals, blood metabolic profiles, nutrient intake and milk yield and composition. Nineteen Holstein cows were selected and randomly assigned to two groups for receiving organic (n = 9) or inorganic (n = 10) sources of Zn, Cu and Se from 60 days before the expected date of calving to 80 days of lactation. Samples of feed, orts and milk were collected for analysis. Body condition score (BCS) was determined and blood samples were collected for analysis of Zn, Cu and Se concentrations, as well as for metabolic profile. Supplying organic or inorganic sources of Zn, Cu, and Se did not affect dry matter and nutrient intake, blood metabolic profile, milk yield and composition, plasma concentration of these minerals, and BCS or change the BCS in cows from 60 days before the expected date of calving to 80 days of lactation. An effect of time was observed on all feed intake variables, plasma concentrations of Zn and Se, milk yield, milk protein content, BCS and change in BCS.