18 resultados para spatial model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We consider an interacting particle system representing the spread of a rumor by agents on the d-dimensional integer lattice. Each agent may be in any of the three states belonging to the set {0,1,2}. Here 0 stands for ignorants, 1 for spreaders and 2 for stiflers. A spreader tells the rumor to any of its (nearest) ignorant neighbors at rate lambda. At rate alpha a spreader becomes a stifler due to the action of other (nearest neighbor) spreaders. Finally, spreaders and stiflers forget the rumor at rate one. We study sufficient conditions under which the rumor either becomes extinct or survives with positive probability.
Resumo:
The expansion of sugarcane growing in Brazil, spurred particularly by increased demand for ethanol, has triggered the need to evaluate the economic, social, and environmental impacts of this process, both on the country as a whole and on the growing regions. Even though the balance of costs and benefits is positive from an overall standpoint, this may not be so in specific producing regions, due to negative externalities. The objective of this paper is to estimate the effect of growing sugarcane on the human development index (HDI) and its sub-indices in cane producing regions. In the literature on matching effects, this is interpreted as the effect of the treatment on the treated. Location effects are controlled by spatial econometric techniques, giving rise to the spatial propensity score matching model. The authors analyze 424 minimum comparable areas (MCAs) in the treatment group, compared with 907 MCAs in the control group. The results suggest that the presence of sugarcane growing in these areas is not relevant to determine their social conditions, whether for better or worse. It is thus likely that public policies, especially those focused directly on improving education, health, and income generation/distribution, have much more noticeable effects on the municipal HDI.
Resumo:
The objective of this work was to evaluate extreme water table depths in a watershed, using methods for geographical spatial data analysis. Groundwater spatio-temporal dynamics was evaluated in an outcrop of the Guarani Aquifer System. Water table depths were estimated from monitoring of water levels in 23 piezometers and time series modeling available from April 2004 to April 2011. For generation of spatial scenarios, geostatistical techniques were used, which incorporated into the prediction ancillary information related to the geomorphological patterns of the watershed, using a digital elevation model. This procedure improved estimates, due to the high correlation between water levels and elevation, and aggregated physical sense to predictions. The scenarios showed differences regarding the extreme levels - too deep or too shallow ones - and can subsidize water planning, efficient water use, and sustainable water management in the watershed.
Resumo:
Many hypotheses have been proposed to explain high species diversity in Amazonia, but few generalizations have emerged. In part, this has arisen from the scarcity of rigorous tests for mechanisms promoting speciation, and from major uncertainties about palaeogeographic events and their spatial and temporal associations with diversification. Here, we investigate the environmental history of Amazonia using a phylogenetic and biogeographic analysis of trumpeters (Aves: Psophia), which are represented by species in each of the vertebrate areas of endemism. Their relationships reveal an unforeseen 'complete' time-slice of Amazonian diversification over the past 3.0 Myr. We employ this temporally calibrated phylogeny to test competing palaeogeographic hypotheses. Our results are consistent with the establishment of the current Amazonian drainage system at approximately 3.0-2.0 Ma and predict the temporal pattern of major river formation over Plio-Pleistocene times. We propose a palaeobiogeographic model for the last 3.0 Myr of Amazonian history that has implications for understanding patterns of endemism, the temporal history of Amazonian diversification and mechanisms promoting speciation. The history of Psophia, in combination with new geological evidence, provides the strongest direct evidence supporting a role for river dynamics in Amazonian diversification, and the absence of such a role for glacial climate cycles and refugia.
Resumo:
Mosquitoes are vectors of arboviruses that can cause encephalitis and hemorrhagic fevers in humans. Aedes serratus (Theobald), Aedes scapularis (Rondani) and Psorophora ferox (Von Humboldt) are potential vectors of arboviruses and are abundant in Vale do Ribeira, located in the Atlantic Forest in the southeast of the State of Sao Paulo, Brazil. The objective of this study was to predict the spatial distribution of these mosquitoes and estimate the risk of human exposure to mosquito bites. Results of the analyses show that humans are highly exposed to bites in the municipalities of Cananeia, Iguape and Ilha Comprida. In these localities the incidence of Rocio encephalitis was 2% in the 1970s. Furthermore, Ae. serratus, a recently implicated vector of yellow fever virus in the State of Rio Grande do Sul, should be a target for the entomological surveillance in the southeastern Atlantic Forest. Considering the continental dimensions of Brazil and the inherent difficulties in sampling its vast area, the habitat suitability method used in the study can be an important tool for predicting the distribution of vectors of pathogens.
Resumo:
We propose a stage-structured integrodifference model for blowflies' growth and dispersion taking into account the density dependence of fertility and survival rates and the non-overlap of generations. We assume a discrete-time, stage-structured, model. The spatial dynamics is introduced by means of a redistribution kernel. We treat one and two dimensional cases, the latter on the semi-plane, with a reflexive boundary. We analytically show that the upper bound for the invasion front speed is the same as in the one-dimensional case. Using laboratory data for fertility and survival parameters and dispersal data of a single generation from a capture-recapture experiment in South Africa, we obtain an estimate for the velocity of invasion of blowflies of the species Chrysomya albiceps. This model predicts a speed of invasion which was compared to actual observational data for the invasion of the focal species in the Neotropics. Good agreement was found between model and observations.
Resumo:
Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.
Resumo:
Effects of roads on wildlife and its habitat have been measured using metrics, such as the nearest road distance, road density, and effective mesh size. In this work we introduce two new indices: (1) Integral Road Effect (IRE), which measured the sum effects of points in a road at a fixed point in the forest; and (2) Average Value of the Infinitesimal Road Effect (AVIRE), which measured the average of the effects of roads at this point. IRE is formally defined as the line integral of a special function (the infinitesimal road effect) along the curves that model the roads, whereas AVIRE is the quotient of IRE by the length of the roads. Combining tools of ArcGIS software with a numerical algorithm, we calculated these and other road and habitat cover indices in a sample of points in a human-modified landscape in the Brazilian Atlantic Forest, where data on the abundance of two groups of small mammals (forest specialists and habitat generalists) were collected in the field. We then compared through the Akaike Information Criterion (AIC) a set of candidate regression models to explain the variation in small mammal abundance, including models with our two new road indices (AVIRE and IRE) or models with other road effect indices (nearest road distance, mesh size, and road density), and reference models (containing only habitat indices, or only the intercept without the effect of any variable). Compared to other road effect indices, AVIRE showed the best performance to explain abundance of forest specialist species, whereas the nearest road distance obtained the best performance to generalist species. AVIRE and habitat together were included in the best model for both small mammal groups, that is, higher abundance of specialist and generalist small mammals occurred where there is lower average road effect (less AVIRE) and more habitat. Moreover, AVIRE was not significantly correlated with habitat cover of specialists and generalists differing from the other road effect indices, except mesh size, which allows for separating the effect of roads from the effect of habitat on small mammal communities. We suggest that the proposed indices and GIS procedures could also be useful to describe other spatial ecological phenomena, such as edge effect in habitat fragments. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Scientists predict that global agricultural lands will expand over the next few decades due to increasing demands for food production and an exponential increase in crop-based biofuel production. These changes in land use will greatly impact biogeochemical and biogeophysical cycles across the globe. It is therefore important to develop models that can accurately simulate the interactions between the atmosphere and important crops. In this study, we develop and validate a new process-based sugarcane model (included as a module within the Agro-IBIS dynamic agro-ecosystem model) which can be applied at multiple spatial scales. At site level, the model systematically under/overestimated the daily sensible/latent heat flux (by -10.5% and 14.8%, H and E, respectively) when compared against the micrometeorological observations from southeast Brazil. The model underestimated ET (relative bias between -10.1% and 12.5%) when compared against an agro-meteorological field experiment from northeast Australia. At the regional level, the model accurately simulated average yield for the four largest mesoregions (clusters of municipalities) in the state of Sao Paulo, Brazil, over a period of 16 years, with a yield relative bias of -0.68% to 1.08%. Finally, the simulated annual average sugarcane yield over 31 years for the state of Louisiana (US) had a low relative bias (-2.67%), but exhibited a lower interannual variability than the observed yields.
Resumo:
We use the photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system to study wavenumber locking of Turing patterns to two-dimensional "square" spatial forcing, implemented as orthogonal sets of bright bands projected onto the reaction medium. Various resonant structures emerge in a broad range of forcing wavelengths and amplitudes, including square lattices and superlattices, one-dimensional stripe patterns and oblique rectangular patterns. Numerical simulations using a model that incorporates additive two-dimensional spatially periodic forcing reproduce well the experimental observations.
Resumo:
Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.
Resumo:
In this work, we employ renormalization group methods to study the general behavior of field theories possessing anisotropic scaling in the spacetime variables. The Lorentz symmetry breaking that accompanies these models are either soft, if no higher spatial derivative is present, or it may have a more complex structure if higher spatial derivatives are also included. Both situations are discussed in models with only scalar fields and also in models with fermions as a Yukawa-like model.
Resumo:
Spatial linear models have been applied in numerous fields such as agriculture, geoscience and environmental sciences, among many others. Spatial dependence structure modelling, using a geostatistical approach, is an indispensable tool to estimate the parameters that define this structure. However, this estimation may be greatly affected by the presence of atypical observations in the sampled data. The purpose of this paper is to use diagnostic techniques to assess the sensitivity of the maximum-likelihood estimators, covariance functions and linear predictor to small perturbations in the data and/or the spatial linear model assumptions. The methodology is illustrated with two real data sets. The results allowed us to conclude that the presence of atypical values in the sample data have a strong influence on thematic maps, changing the spatial dependence structure.
Resumo:
Questions Does the spatial association between isolated adult trees and understorey plants change along a gradient of sand dunes? Does this association depend on the life form of the understorey plant? Location Coastal sand dunes, southeast Brazil. Methods We recorded the occurrence of understorey plant species in 100 paired 0.25 m2 plots under adult trees and in adjacent treeless sites along an environmental gradient from beach to inland. Occurrence probabilities were modelled as a function of the fixed variables of the presence of a neighbour, distance from the seashore and life form, and a random variable, the block (i.e. the pair of plots). Generalized linear mixed models (GLMM) were fitted in a backward step-wise procedure using Akaike's information criterion (AIC) for model selection. Results The occurrence of understorey plants was affected by the presence of an adult tree neighbour, but the effect varied with the life form of the understorey species. Positive spatial association was found between isolated adult neighbour and young trees, whereas a negative association was found for shrubs. Moreover, a neutral association was found for lianas, whereas for herbs the effect of the presence of an adult neighbour ranged from neutral to negative, depended on the subgroup considered. The strength of the negative association with forbs increased with distance from the seashore. However, for the other life forms, the associational pattern with adult trees did not change along the gradient. Conclusions For most of the understorey life forms there is no evidence that the spatial association between isolated adult trees and understorey plants changes with the distance from the seashore, as predicted by the stress gradient hypothesis, a common hypothesis in the literature about facilitation in plant communities. Furthermore, the positive spatial association between isolated adult trees and young trees identified along the entire gradient studied indicates a positive feedback that explains the transition from open vegetation to forest in subtropical coastal dune environments.
Resumo:
Background: In a classical study, Durkheim mapped suicide rates, wealth, and low family density and realized that they clustered in northern France. Assessing others variables, such as religious society, he constructed a framework for the analysis of the suicide, which still allows international comparisons using the same basic methodology. The present study aims to identify possible significantly clusters of suicide in the city of Sao Paulo, and then, verify their statistical associations with socio-economic and cultural characteristics. Methods: A spatial scan statistical test was performed to analyze the geographical pattern of suicide deaths of residents in the city of Sao Paulo by Administrative District, from 1996 to 2005. Relative risks and high and/or low clusters were calculated accounting for gender and age as co-variates, were analyzed using spatial scan statistics to identify geographical patterns. Logistic regression was used to estimate associations with socioeconomic variables, considering, the spatial cluster of high suicide rates as the response variable. Drawing from Durkheim's original work, current World Health Organization (WHO) reports and recent reviews, the following independent variables were considered: marital status, income, education, religion, and migration. Results: The mean suicide rate was 4.1/100,000 inhabitant-years. Against this baseline, two clusters were identified: the first, of increased risk (RR = 1.66), comprising 18 districts in the central region; the second, of decreased risk (RR = 0.78), including 14 districts in the southern region. The downtown area toward the southwestern region of the city displayed the highest risk for suicide, and though the overall risk may be considered low, the rate climbs up to an intermediate level in this region. One logistic regression analysis contrasted the risk cluster (18 districts) against the other remaining 78 districts, testing the effects of socioeconomic-cultural variables. The following categories of proportion of persons within the clusters were identified as risk factors: singles (OR = 2.36), migrants (OR = 1.50), Catholics (OR = 1.37) and higher income (OR = 1.06). In a second logistic model, likewise conceived, the following categories of proportion of persons were identified as protective factors: married (OR = 0.49) and Evangelical (OR = 0.60). Conclusions: This risk/ protection profile is in accordance with the interpretation that, as a social phenomenon, suicide is related to social isolation. Thus, the classical framework put forward by Durkheim seems to still hold, even though its categorical expression requires re-interpretation.