6 resultados para sparse Bayesian regression
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Introduction: The purpose of this ecological study was to evaluate the urban spatial and temporal distribution of tuberculosis (TB) in Ribeirao Preto, State of Sao Paulo, southeast Brazil, between 2006 and 2009 and to evaluate its relationship with factors of social vulnerability such as income and education level. Methods: We evaluated data from TBWeb, an electronic notification system for TB cases. Measures of social vulnerability were obtained from the SEADE Foundation, and information about the number of inhabitants, education and income of the households were obtained from Brazilian Institute of Geography and Statistics. Statistical analyses were conducted by a Bayesian regression model assuming a Poisson distribution for the observed new cases of TB in each area. A conditional autoregressive structure was used for the spatial covariance structure. Results: The Bayesian model confirmed the spatial heterogeneity of TB distribution in Ribeirao Preto, identifying areas with elevated risk and the effects of social vulnerability on the disease. We demonstrated that the rate of TB was correlated with the measures of income, education and social vulnerability. However, we observed areas with low vulnerability and high education and income, but with high estimated TB rates. Conclusions: The study identified areas with different risks for TB, given that the public health system deals with the characteristics of each region individually and prioritizes those that present a higher propensity to risk of TB. Complex relationships may exist between TB incidence and a wide range of environmental and intrinsic factors, which need to be studied in future research.
Resumo:
INTRODUCTION: The purpose of this ecological study was to evaluate the urban spatial and temporal distribution of tuberculosis (TB) in Ribeirão Preto, State of São Paulo, southeast Brazil, between 2006 and 2009 and to evaluate its relationship with factors of social vulnerability such as income and education level. METHODS: We evaluated data from TBWeb, an electronic notification system for TB cases. Measures of social vulnerability were obtained from the SEADE Foundation, and information about the number of inhabitants, education and income of the households were obtained from Brazilian Institute of Geography and Statistics. Statistical analyses were conducted by a Bayesian regression model assuming a Poisson distribution for the observed new cases of TB in each area. A conditional autoregressive structure was used for the spatial covariance structure. RESULTS: The Bayesian model confirmed the spatial heterogeneity of TB distribution in Ribeirão Preto, identifying areas with elevated risk and the effects of social vulnerability on the disease. We demonstrated that the rate of TB was correlated with the measures of income, education and social vulnerability. However, we observed areas with low vulnerability and high education and income, but with high estimated TB rates. CONCLUSIONS: The study identified areas with different risks for TB, given that the public health system deals with the characteristics of each region individually and prioritizes those that present a higher propensity to risk of TB. Complex relationships may exist between TB incidence and a wide range of environmental and intrinsic factors, which need to be studied in future research.
Resumo:
The objective of this paper is to model variations in test-day milk yields of first lactations of Holstein cows by RR using B-spline functions and Bayesian inference in order to fit adequate and parsimonious models for the estimation of genetic parameters. They used 152,145 test day milk yield records from 7317 first lactations of Holstein cows. The model established in this study was additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. Authors modeled the average lactation curve of the population with a fourth-order orthogonal Legendre polynomial. They concluded that a cubic B-spline with seven random regression coefficients for both the additive genetic and permanent environment effects was to be the best according to residual mean square and residual variance estimates. Moreover they urged a lower order model (quadratic B-spline with seven random regression coefficients for both random effects) could be adopted because it yielded practically the same genetic parameter estimates with parsimony. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Changepoint regression models have originally been developed in connection with applications in quality control, where a change from the in-control to the out-of-control state has to be detected based on the avaliable random observations. Up to now various changepoint models have been suggested for differents applications like reliability, econometrics or medicine. In many practical situations the covariate cannot be measured precisely and an alternative model are the errors in variable regression models. In this paper we study the regression model with errors in variables with changepoint from a Bayesian approach. From the simulation study we found that the proposed procedure produces estimates suitable for the changepoint and all other model parameters.
Resumo:
To estimate causal relationships, time series econometricians must be aware of spurious correlation, a problem first mentioned by Yule (1926). To deal with this problem, one can work either with differenced series or multivariate models: VAR (VEC or VECM) models. These models usually include at least one cointegration relation. Although the Bayesian literature on VAR/VEC is quite advanced, Bauwens et al. (1999) highlighted that "the topic of selecting the cointegrating rank has not yet given very useful and convincing results". The present article applies the Full Bayesian Significance Test (FBST), especially designed to deal with sharp hypotheses, to cointegration rank selection tests in VECM time series models. It shows the FBST implementation using both simulated and available (in the literature) data sets. As illustration, standard non informative priors are used.
Resumo:
OBJECTIVE: To estimate the pretest probability of Cushing's syndrome (CS) diagnosis by a Bayesian approach using intuitive clinical judgment. MATERIALS AND METHODS: Physicians were requested, in seven endocrinology meetings, to answer three questions: "Based on your personal expertise, after obtaining clinical history and physical examination, without using laboratorial tests, what is your probability of diagnosing Cushing's Syndrome?"; "For how long have you been practicing Endocrinology?"; and "Where do you work?". A Bayesian beta regression, using the WinBugs software was employed. RESULTS: We obtained 294 questionnaires. The mean pretest probability of CS diagnosis was 51.6% (95%CI: 48.7-54.3). The probability was directly related to experience in endocrinology, but not with the place of work. CONCLUSION: Pretest probability of CS diagnosis was estimated using a Bayesian methodology. Although pretest likelihood can be context-dependent, experience based on years of practice may help the practitioner to diagnosis CS. Arq Bras Endocrinol Metab. 2012;56(9):633-7