2 resultados para sparkle model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Six new lanthanide complexes of stoichiometric formula (C)(2)[Ln(Pic)(5)]-where (C) is a imidazolium cation coming from the ionic liquids 1-butyl-3-methylimidazolium picrate (BMIm-Pic), 1-butyl-3-ethylimidazolium picrate (BEIm-Pic), and 1,3-dibutylimidazolium picrate (BBIm-Pic), and Ln is Eu(III) or Gd(III) ions-have been prepared and characterized. To the best of our knowledge, these are the first cases of Ln(III) pentakis(picrate) complexes. The crystal structures of (BEIm)(2)[Eu(Pic)(5)] and (BBIm)(2)[Eu(Pic)(5)] compounds were determined by single-crystal X-ray diffraction. The [Eu(Pic)(5)](2-) polyhedra have nine oxygen atoms coordinated to the Eu(III) ion, four oxygen atoms from bidentate picrate, and one oxygen atom from monodentate picrate. The structures of the Eu complexes were also calculated using the sparkle model for lanthanide complexes, allowing an analysis of intramolecular energy transfer processes in the coordination compounds. The photoluminescence properties of the Eu(III) complexes were then studied experimentally and theoretically, leading to a rationalization of their emission quantum yields.
Resumo:
The synthesis and photoluminescent properties of Ln(III)-thenoyltrifluoroacetonate and dibenzoylmethanate complexes (Ln = Eu(III) and Gd(III) ions) containing tertiary amides such as dimethylacetamide (DMA), dimethylformamide (DMF), and dimethylbenzamide (DMB) as neutral ligands are reported. The Ln complexes were characterized by elemental analysis, complexometric titration with EDTA, and infrared spectroscopy. Single-crystal X-ray structure data of the [Eu(DBM)(3).(DMA)] compound indicates that this complex crystallizes in the triclinic system, space group PT with the following cell parameters: a = 10.2580(3) angstrom, b = 10.3843(2) angstrom, c= 22.3517(5) angstrom, alpha = 78.906(2)degrees, beta = 78.049(2)degrees, lambda= 63.239(2)degrees, V= 2066.41(9) angstrom(3), and Z = 2. The coordination polyhedron for the Eu(III) complex may be described as an approximate C-2v distorted monocapped trigonal prism. The optical properties of the Eu(III) complexes were studied based on the intensity parameters and luminescence quantum yield (q). The values of the ohm(2) parameter of the Eu-DBM complexes are larger than those for the Eu-TTA complexes, indicating that the Eu(III) ion is in a more polarizable chemical environment in the former case. The geometries of the complexes have been optimized by using the Sparkle Model, and the results have been used to perform theoretical predictions of the ligand-to-metal energy transfer via direct and exchange Coulomb mechanisms. (C) 2012 Elsevier Ltd. All rights reserved.