4 resultados para solid electrolyte interphase
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Air conditioning and lighting costs can be reduced substantially by changing the optical properties of "intelligent windows." The electrochromic devices studied to date have used copper as an additive. Copper, used here as an electrochromic material, was dissolved in an aqueous animal protein-derived gel electrolyte. This combination constitutes the electrochromic system for reversible electrodeposition. Cyclic voltammetry, chronoamperometric and chromogenic analyses indicated that were obtained good conditions of transparency (initial transmittance of 70%), optical reversibility, small potential window (2.1 V), variation of transmittance in visible light (63.6%) and near infrared (20%) spectral regions. Permanence in the darkened state was achieved by maintaining a lower pulse potential (-0.16 V) than the deposition potential (-1.0 V). Increasing the number of deposition and dissolution cycles favored the transmittance and photoelectrochemical reversibility of the device. The conductivity of the electrolyte (10(-3) S/cm) at several concentrations of CuCl2 was determined by electrochemical impedance spectroscopy. A thermogravimetric analysis confirmed the good thermal stability of the electrolyte, since the mass loss detected up to 100 degrees C corresponded to water evaporation and decomposition of the gel started only at 200 degrees C. Micrographic and small angle X-ray scattering analyses indicated the formation of a persistent deposit of copper particles on the ITO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Doped barium cerate is a promising solid electrolyte for intermediate temperature fuel cells as a protonic conductor. However, it is difficult to sinter it to high density at a reasonable temperature. Moreover, it presents a high grain boundary resistivity at intermediate temperatures. Flash grain welding was applied to compacted samples, starting from a temperature of 910 degrees C and applying, for a short time, an ac electric polarization of 40 V, 1000 Hz. At that frequency, the resulting current flows through the grain boundaries promoting a welding via a local Joule heating. A large decrease of the grain boundary resistivity was observed by impedance spectroscopy. Scanning electron microscopy observations of polished and etched surfaces revealed highly sintered regions. Attempts were also made to combine flash grain welding with conventional sintering. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Gel Polymer Electrolytes (GPE) based on agar and containing LiClO4 have been prepared, characterized and applied to electrochromic devices. The ionic conductivity revealed the best result of 6.5 x 10(-5) S/cm for the sample with 17 wt.% of LiClO4, which increased to 5.4 x 10(-4) S/cm at 72 degrees C. TheGPE have been used in electrochromic devices (ECD) with K-glass/WO3/GPE/CeO2-TiO2/K-glass configuration. The ECD changed transmittance values up to 30% between the colored and transparent states. The charge density measurements revealed an increase of 5.5 to 7.5 mC/cm(2) from the first to 500th cycles and then a decrease to 4.4 mC/cm(2) during the next 4500 cycles. Coloration efficiency (eta) of 25 cm(2)/C was obtained.
Resumo:
Dispersion of photoluminescent rare earth metal complexes in polymer matrices is of great interest due to the possibility of avoiding the saturation of the photoluminescent signal. The possibility of using a natural ionic conducting polymer matrix was investigated in this study. Samples of agar-based electrolytes containing europium picrate were prepared and characterized by physical and chemical analyses. The FTIR spectra indicated strong interaction of agar O-H and 3.6-anhydro-galactose C-O groups with glycerol and europium picrate. The DSC analyses revealed no glass transition temperature of the samples in the -60 to 250 degrees C range. From the thermogravimetry (TG), a thermal stability of the samples of up to 180 degrees C was stated. The membranes were subjected to ionic conductivity measurement, which provided the values of 2.6 x 10(-6) S/cm for the samples with acetic acid and 1.6 x 10(-5) S/cm for the samples without acetic acid. Moreover, the temperature-dependent ionic conductivity measurements revealed both Arrhenius and VTF models of the conductivity depending on the sample. Surface visualization through scanning electron microscopy (SEM) demonstrated good uniformity. The samples were also applied in small electrochromic devices and showed good electrochemical stability. The present work confirmed that these materials may perform as satisfactory multifunctional component layers in the field of electrochemical devices. (C) 2012 Elsevier B.V. All rights reserved.