5 resultados para size-selection
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The starting point of this article is the question "How to retrieve fingerprints of rhythm in written texts?" We address this problem in the case of Brazilian and European Portuguese. These two dialects of Modern Portuguese share the same lexicon and most of the sentences they produce are superficially identical. Yet they are conjectured, on linguistic grounds, to implement different rhythms. We show that this linguistic question can be formulated as a problem of model selection in the class of variable length Markov chains. To carry on this approach, we compare texts from European and Brazilian Portuguese. These texts are previously encoded according to some basic rhythmic features of the sentences which can be automatically retrieved. This is an entirely new approach from the linguistic point of view. Our statistical contribution is the introduction of the smallest maximizer criterion which is a constant free procedure for model selection. As a by-product, this provides a solution for the problem of optimal choice of the penalty constant when using the BIC to select a variable length Markov chain. Besides proving the consistency of the smallest maximizer criterion when the sample size diverges, we also make a simulation study comparing our approach with both the standard BIC selection and the Peres-Shields order estimation. Applied to the linguistic sample constituted for our case study, the smallest maximizer criterion assigns different context-tree models to the two dialects of Portuguese. The features of the selected models are compatible with current conjectures discussed in the linguistic literature.
Resumo:
In Odonata, many species present sexual size dimorphism (SSD), which can be associated with male territoriality in Zygoptera. We hypothesized that in the territorial damselfly Argia reclusa, male-male competition can favor large males, and consequently, drive selection pressures to generate male-biased SSD. The study was performed at a small stream in southeastern Brazil. Males were marked, and we measured body size and assessed the quality of territories. We tested if larger territorial males (a) defended the best territories (those with more male intrusions and visiting females), (b) won more fights, and (c) mated more. Couples were collected and measured to show the occurrence of sexual size dimorphism. Results indicated that males are larger than females, and that territorial males were larger than non-territorial males. Larger territorial males won more fights and defended the best territories. There was no difference between the mating success of large territorial and small non-territorial males. Although our findings suggest that male territoriality may play a significant role on the evolution of sexual size dimorphism in A. reclusa, we suggest that other factors should also be considered to explain the evolution of SSD in damselflies, since non-territorial males are also capable of acquiring mates.
Male dimorphism of a neotropical arachnid: harem size, sneaker opportunities, and gonadal investment
Resumo:
Serracutisoma proximum is a harvestman with alternative male morphs. Large males use sexually dimorphic second legs in fights for the possession of territories on the vegetation, where females oviposit. Small males have short second legs and do not fight but rather sneak into the territories and copulate with egg-guarding females. We investigated the presence of male dimorphism across 10 populations of S. proximum, compared gonadal investment between male morphs, and assessed if the distribution of the sneakers is influenced by harem size. In all populations, there was male dimorphism, indicated by the bimodal distribution of the leg II length/body length. Gonadal investment did not differ between morphs and was not affected by male size, second leg length, and morph relative frequency in the populations. We found 361 territories, 90.0% containing 1 male, 9.7% containing 2 males (dyads), and 0.3% containing 3 males. The probability of encountering dyads increased with the number of females present in the territories. Moreover, the proportion of sneakers in territories containing dyads was higher than would be expected by chance. One possible reason for the ubiquity of alternative morphs in S. proximum could be the high mating opportunities experienced by sneakers in spatially structured populations with a resource defense polygyny system. Additionally, the high frequency of successful invasions by sneakers and hence the high sperm competition risk for both morphs may explain the similarity in gonadal investment between male morphs.
Resumo:
Background The evolutionary advantages of selective attention are unclear. Since the study of selective attention began, it has been suggested that the nervous system only processes the most relevant stimuli because of its limited capacity [1]. An alternative proposal is that action planning requires the inhibition of irrelevant stimuli, which forces the nervous system to limit its processing [2]. An evolutionary approach might provide additional clues to clarify the role of selective attention. Methods We developed Artificial Life simulations wherein animals were repeatedly presented two objects, "left" and "right", each of which could be "food" or "non-food." The animals' neural networks (multilayer perceptrons) had two input nodes, one for each object, and two output nodes to determine if the animal ate each of the objects. The neural networks also had a variable number of hidden nodes, which determined whether or not it had enough capacity to process both stimuli (Table 1). The evolutionary relevance of the left and the right food objects could also vary depending on how much the animal's fitness was increased when ingesting them (Table 1). We compared sensory processing in animals with or without limited capacity, which evolved in simulations in which the objects had the same or different relevances. Table 1. Nine sets of simulations were performed, varying the values of food objects and the number of hidden nodes in the neural networks. The values of left and right food were swapped during the second half of the simulations. Non-food objects were always worth -3. The evolution of neural networks was simulated by a simple genetic algorithm. Fitness was a function of the number of food and non-food objects each animal ate and the chromosomes determined the node biases and synaptic weights. During each simulation, 10 populations of 20 individuals each evolved in parallel for 20,000 generations, then the relevance of food objects was swapped and the simulation was run again for another 20,000 generations. The neural networks were evaluated by their ability to identify the two objects correctly. The detectability (d') for the left and the right objects was calculated using Signal Detection Theory [3]. Results and conclusion When both stimuli were equally relevant, networks with two hidden nodes only processed one stimulus and ignored the other. With four or eight hidden nodes, they could correctly identify both stimuli. When the stimuli had different relevances, the d' for the most relevant stimulus was higher than the d' for the least relevant stimulus, even when the networks had four or eight hidden nodes. We conclude that selection mechanisms arose in our simulations depending not only on the size of the neuron networks but also on the stimuli's relevance for action.
Resumo:
Since instrumentation of the apical foramen has been suggested for cleaning and disinfection of the cemental canal, selection of the file size and position of the apical foramen have challenging steps. This study analyzed the influence of apical foramen lateral opening and file size can exert on cemental canal instrumentation. Thirty-four human maxillary central incisors were divided in two groups: Group 1 (n=17), without flaring, and Group 2 (n=17), with flaring with LA Axxess burs. K-files of increasing diameters were progressively inserted into the canal until binding at the apical foramen was achieved and tips were visible and bonded with ethyl cyanoacrylate adhesive. Roots/files set were cross-sectioned 5 mm from the apex. Apices were examined by scanning electron microscopy at ×140 and digital images were captured. Data were analyzed statistically by Student’s t test and Fisher’s exact test at 5% significance level. SEM micrographs showed that 19 (56%) apical foramina emerged laterally to the root apex, whereas 15 (44%) coincided with it. Significantly more difficulty to reach the apical foramen was noted in Group 2. Results suggest that the larger the foraminal file size, the more difficult the apical foramen instrumentation may be in laterally emerged cemental canals.