4 resultados para size-fecundity relationships
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Biometric relationships were recorded for 2431 male and female Panulirus echinatus sampled at Tamandare coastal reefs, Pernambuco, Brazil. The following body measurements were taken: carapace length and width, abdomen length and width, total length, third and fifth pereiopod length, cephalothorax-abdomen and total weight. Twelve relationships were studied to compare the biometric characteristics Of males and females. Eleven of them showed difference between the sexes. Comparing sexes with the same carapace length, males have a heavier cephalothorax and longer third and fifth pereiopods than females, whereas females are longer, wider, and have a heavier abdomen than males. For genders with the same total length, males are heavier and have a longer carapace than females, while females have a larger abdomen. For genders with the same abdomen length, males have a heavier abdomen than females. The relationships TWg/TL and A Wg/AL showed positive allometric growth for the males. All other relationships involving weight, presented negative allometric growth for both sexes.
Resumo:
Cooperation between individuals is an important requisite for the maintenance of social relationships. The purpose of this study was to investigate cooperation in children in the school environment, where individuals could cooperate or not with their classmates in a public goods game. We investigated which of the following variables influenced cooperation in children: sex, group size, and information on the number of sessions. Group size was the only factor to significantly affect cooperation, with small-group children cooperating significantly more than those in large groups. Both sex and information had no effect on cooperation. We suggest that these results reflect the fact that, in small groups, individuals were more efficient in controlling and retaliating theirs peers than in large groups. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Locomotor capacity is often considered an excellent measure of whole animal performance because it requires the integrated functioning of many morphological, physiological (and biochemical) traits. However, because studies tend to focus on either structural or functional suits of traits, we know little on whether and how morphological and physiological traits coevolve to produce adequate locomotor capacities. Hence, we investigate the evolutionary relationships between morphological and physiological parameters related to exercise physiology, using tropidurine lizards as a model. We employ a phylogenetic principal component analysis (PCA) to identify variable clusters (factors) related to morphology, energetic metabolism and muscle metabolism, and then analyze the relationships between these clusters and measures of locomotor performance, using two models (star and hierarchical phylogenies). Our data indicate that sprint performance is enhanced by simultaneous evolutionary tendencies affecting relative limb and tail size and physiological traits. Specifically, the high absolute sprint speeds exhibited by tropidurines from the sand dunes are explained by longer limbs, feet and tails and an increased proportion of glycolytic fibers in the leg muscle, contrasting with their lower capacity for overall oxidative metabolism [principal component (PC1)]. However, when sprint speeds are corrected for body size, performance correlates with a cluster (PC3) composed by moderate loads for activity metabolic rate and body size. The simultaneous measurement of morphological and physiological parameters is a powerful tool for exploring patterns of coadaptation and proposing morphophysiological associations that are not directly predictable from theory. This approach may trigger novel directions for investigating the evolution of form and function, particularly in the context of organismal performance.
Resumo:
A procedure has been proposed by Ciotti and Bricaud (2006) to retrieve spectral absorption coefficients of phytoplankton and colored detrital matter (CDM) from satellite radiance measurements. This was also the first procedure to estimate a size factor for phytoplankton, based on the shape of the retrieved algal absorption spectrum, and the spectral slope of CDM absorption. Applying this method to the global ocean color data set acquired by SeaWiFS over twelve years (1998-2009), allowed for a comparison of the spatial variations of chlorophyll concentration ([Chl]), algal size factor (S-f), CDM absorption coefficient (a(cdm)) at 443 nm, and spectral slope of CDM absorption (S-cdm). As expected, correlations between the derived parameters were characterized by a large scatter at the global scale. We compared temporal variability of the spatially averaged parameters over the twelve-year period for three oceanic areas of biogeochemical importance: the Eastern Equatorial Pacific, the North Atlantic and the Mediterranean Sea. In all areas, both S-f and a(cdm)(443) showed large seasonal and interannual variations, generally correlated to those of algal biomass. The CDM maxima appeared in some occasions to last longer than those of [Chl]. The spectral slope of CDM absorption showed very large seasonal cycles consistent with photobleaching, challenging the assumption of a constant slope commonly used in bio-optical models. In the Equatorial Pacific, the seasonal cycles of [Chl], S-f, a(cdm)(443) and S-cdm, as well as the relationships between these parameters, were strongly affected by the 1997-98 El Ni o/La Ni a event.