2 resultados para silica coating

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wet impregnation of pre-synthesized surfactant-stabilized aqueous rhodium (0) colloidal suspension on silica was employed in order to prepare supported Rh-0 nanoparticles of well-defined composition, morphology and size. A magnetic core-shell support of silica (Fe(3)O4@SiO2) was used to increase the handling properties of the obtained nanoheterogeneous catalyst. The nanocomposite catalyst Fe3O4@SiO2-Rh-0 NPs was highly active in the solventless hydrogenation of model olefins and aromatic substrates under mild conditions with turnover frequencies up to 143,000 h(-1). The catalyst was characterized by various transmission electron microscopy techniques showing well-dispersed rhodium nanoparticles (similar to 3 nm) mainly located at the periphery of the silica coating. The heterogeneous magnetite-supported nanocatalyst was investigated in the hydrogenation of cyclohexene and compared to the previous surfactant-stabilized aqueous Rh-0 colloidal suspension and various silica-supported Rh-0 nanoparticles. Finally, the composite catalyst could be reused in several runs after magnetic separation. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 mu m Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 mu m SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 mu m, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37A degrees C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (alpha a parts per thousand currency sign0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.