2 resultados para short interspersed repeat

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leptospira, the causative agent of leptospirosis, interacts with several host molecules, including extracellular matrix components, coagulation cascade proteins, and human complement regulators. Here we demonstrate that acquisition of factor H (FH) on the Leptospira surface is crucial for bacterial survival in the serum and that these spirochetes, besides interacting with FH, FH related-1, and C4b binding protein (C4BP), also acquire FH like-1 from human serum. We also demonstrate that binding to these complement regulators is mediated by leptospiral immunoglobulin-like (Lig) proteins, previously shown to interact with fibronectin, laminin, collagen, elastin, tropoelastin, and fibrinogen. Factor H binds to Lig proteins via short consensus repeat domains 5 and 20. Competition assays suggest that FH and C4BP have distinct binding sites on Lig proteins. Moreover, FH and C4BP bound to immobilized Ligs display cofactor activity, mediating C3b and C4b degradation by factor I. In conclusion, Lig proteins are multifunctional molecules, contributing to leptospiral adhesion and immune evasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short tandem DNA repeats and telomerase compose the telomere structure in the vast majority of eukaryotic organisms. However, such a conserved organisation has not been found in dipterans. While telomeric DNA in Drosophila is composed of specific retrotransposons, complex terminal tandem repeats are present in chromosomes of Anopheles and chironomid species. In the sciarid Rhynchosciara americana, short repeats (16 and 22 bp long) tandemly arrayed seem to reach chromosome ends. Moreover, in situ hybridisation data using homopolymeric RNA probes suggested in this species the existence of a third putative chromosome end repeat enriched with (dA).(dT) homopolymers. In this work, chromosome micro-dissection and PCR primed by homopolymeric primers were employed to clone these repeats. Named T-14 and 93 % AT-rich, the repetitive unit is 14 bp long and appears organised in tandem arrays. It is localised in five non-centromeric ends and in four interstitial bands of R. americana chromosomes. To date, T-14 is the shortest repeat that has been characterised in chromosome ends of dipterans. As observed for short tandem repeats identified previously in chromosome ends of R. americana, the T-14 probe hybridised to bridges connecting non-homologous polytene chromosome ends, indicative of close association of T-14 repeats with the very end of the chromosomes. The results of this work suggest that R. americana represents an additional example of organism provided with more than one DNA sequence that is able to reach chromosome termini.