6 resultados para sentimental novel Hispano-American
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
During copulation, spermatophores produced by male coleoid cephalopods undergo the spermatophoric reaction, a complex process of evagination that culminates in the attachment of the spermatangium (everted spermatophore containing the sperm mass) on the female's body. To better understand this complicated phenomenon, the present study investigated the functional morphology of the spermatophore of the squid Doryteuthis plei applying in vitro analysis of the reaction, as well as light and electron microscopy investigation of spermatangia obtained either in vitro, or naturally attached on females. Hitherto unnoticed functional features of the loliginid spermatophore require a reappraisal of some important processes involved in the spermatophoric reaction. The most striking findings concern the attachment mechanism, which is not carried out solely by cement adhesive material, as previously believed, but rather by an autonomous, complex process performed by multiple structures during the spermatophoric reaction. During evagination, the ejaculatory apparatus provides anchorage on the targeted tissue, presumably due to the minute stellate particles present in the exposed spiral filament. Consequently, the ejaculatory apparatus maintains the attachment of the tip of the evaginating spermatophore until the cement body is extruded. Subsequently, the cement body passes through a complex structural rearrangement, which leads to the injection of both its viscid contents and pointed oral region onto the targeted tissue. The inner membrane at the oral region of the cement body contains numerous stellate particles attached at its inner side; eversion of this membrane exposes these sharp structures, which presumably adhere to the tissue and augment attachment. Several naturally attached spermatangia were found with their bases implanted at the deposition sites, and the possible mechanisms of perforation are discussed based on present evidence. The function of the complex squid spermatophore and its spermatophoric reaction is revisited in light of these findings. J. Morphol. 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
In this study, we analyzed the ABCD1 gene in X-linked adrenoleukodystrophy (X-ALD) patients and relatives from 38 unrelated families from South America, as well as phenotypic proportions, survival estimates, and the potential effect of geographical origin in clinical characteristics. Methods: X-ALD patients from Brazil, Argentina and Uruguay were invited to participate in molecular studies to determine their genetic status, characterize the mutations and improve the genetic counseling of their families. All samples were screened by SSCP analysis of PCR fragments, followed by automated DNA sequencing to establish the specific mutation in each family. Age at onset and at death, male phenotypes, genetic status of women, and the effect of family and of latitude of origin were also studied. Results: We identified thirty-six different mutations (twelve novel). This population had an important allelic heterogeneity, as only p. Arg518Gln was repeatedly found (three families). Four cases carried de novo mutations. Intra-familiar phenotype variability was observed in all families. Out of 87 affected males identified, 65% had the cerebral phenotype (CALD). The mean (95% CI) ages at onset and at death of the CALD were 10.9 (9.1-12.7) and 24.7 (19.8-29.6) years. No association was found between phenotypic manifestations and latitude of origin. One index-case was a girl with CALD who carried an ABCD1 mutation, and had completely skewed X inactivation. Conclusions: This study extends the spectrum of mutations in X-ALD, confirms the high rates of de novo mutations and the absence of common mutations, and suggests a possible high frequency of cerebral forms in our population.
Resumo:
Premise of the study: A set of eight microsatellite (simple sequence repeat [SSR]) markers for Lippia alba, an important medicinal and cosmetic plant, was developed to aid studies of genetic diversity and to define efficient strategies for breeding programs. Methods and Results: Using a (CT)(8)- and (GT)(8)-enriched library, a total of 11 SSR loci were developed and optimized in L. alba. Of the 11 loci, eight were found to be polymorphic after screening 61 accessions from two populations. The parameters used to characterize loci were expected heterozygosity (H-e) and number of alleles. A total of 44 alleles were identified, with an average of 5.5 alleles per loci, which were moderately to highly informative according to H-e. Conclusions: These new SSR markers have potential for informing genetic diversity, allele mining, and mapping studies and will be used to generate information for breeding programs of L. alba
Resumo:
Background: Tospoviruses (Genus Tospovirus, Family Bunyaviridae) are phytopathogens responsible for significant worldwide crop losses. They have a tripartite negative and ambisense RNA genome segments, termed S (Small), M (Medium) and L (Large) RNA. The vector-transmission is mediated by thrips in a circulative-propagative manner. For new tospovirus species acceptance, several analyses are needed, e. g., the determination of the viral protein sequences for enlightenment of their evolutionary history. Methodology/Principal Findings: Biological (host range and symptomatology), serological, and molecular (S and M RNA sequencing and evolutionary studies) experiments were performed to characterize and differentiate a new tospovirus species, Bean necrotic mosaic virus (BeNMV), which naturally infects common beans in Brazil. Based upon the results, BeNMV can be classified as a novel species and, together with Soybean vein necrosis-associated virus (SVNaV), they represent members of a new evolutionary lineage within the genus Tospovirus. Conclusion/Significances: Taken together, these evidences suggest that two divergent lineages of tospoviruses are circulating in the American continent and, based on the main clades diversity (American and Eurasian lineages), new tospovirus species related to the BeNMV-SVNaV clade remain to be discovered. This possible greater diversity of tospoviruses may be reflected in a higher number of crops as natural hosts, increasing the economic impact on agriculture. This idea also is supported since BeNMV and SVNaV were discovered naturally infecting atypical hosts (common bean and soybean, respectively), indicating, in this case, a preference for leguminous species. Further studies, for instance a survey focusing on crops, specifically of leguminous plants, may reveal a greater tospovirus diversity not only in the Americas (where both viruses were reported), but throughout the world.
Resumo:
Crotamine, a 5-kDa peptide, possesses a unique biological versatility. Not only has its cell-penetrating activity become of clinical interest but, moreover, its potential selective antitumor activity is of great pharmacological importance. In the past, several studies have attempted to elucidate the exact molecular target responsible for the crotamine-induced skeletal muscle spasm. The aim of this study was to investigate whether crotamine affects voltage-gated potassium (K-V) channels in an effort to explain its in vivo effects. Crotamine was studied on ion channel function using the two-electrode voltage clamp technique on 16 cloned ion channels (12 K-V channels and 4 Na-V channels), expressed in Xenopus laevis oocytes. Crotamine selectively inhibits K-V 1.1, K-V 1.2, and K-V 1.3 channels with an IC50 of similar to 300 nM, and the key amino acids responsible for this molecular interaction are suggested. Our results demonstrate for the first time that the symptoms, which are observed in the typical crotamine syndrome, may result from the inhibition of K-V channels. The ability of crotamine to inhibit the potassium current through K-V channels unravels it as the first snake peptide with the unique multifunctionality of cell-penetrating and antitumoral activity combined with K-V channel-inhibiting properties. This new property of crotamine might explain some experimental observations and opens new perspectives on pharmacological uses.
Resumo:
Juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH) are rare, autosomal recessive disorders of the connective tissue caused by mutations in the gene encoding the anthrax toxin receptor 2 protein (ANTXR2) located on chromosome 4q21. Characteristically, these conditions present with overlapping clinical features, such as nodules and/or pearly papules, gingival hyperplasia, flexion contractures of the joints, and osteolytic bone defects. The present report describes a pair of sibs and three other JHF/ISH patients whose diagnoses were based on typical clinical manifestations and confirmed by histopathologic analyses and/or molecular analysis. A comparison of ISH and JHF, additional thoughts about new terminology (hyaline fibromatosis syndrome) and a modified grading system are also included. (C) 2012 Wiley Periodicals, Inc.