4 resultados para sensore, ottico, assorbanza, scattering, dialisi
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Highly charged peptides are important components of the immune system and belong to an important family of antibiotics. Although their therapeutic activity is known, most of the molecular level mechanisms are controversial. A wide variety of different approaches are usually applied to understand their mechanisms, but light scattering techniques are frequently overlooked. Yet, light scattering is a noninvasive technique that allows insights both on the peptide mechanism of action as well as on the development of new antibiotics. Dynamic light scattering (DLS) and static light scattering (SLS) are used to measure the aggregation process of lipid vesicles upon addition of peptides and molecular properties (shape, molecular weight). The high charge of these peptides allows electrostatic attraction toward charged lipid vesicles, which is studied by zeta potential (zeta-potential) measurements. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
We propose a new CPT-even and Lorentz-violating nonminimal coupling between fermions and Abelian gauge fields involving the CPT-even tensor (K-F)(mu nu alpha beta) of the standard model extension. We thus investigate its effects on the cross section of the electron-positron scattering by analyzing the process e(+) + e(-) -> mu(+) + mu(-). Such a study was performed for the parity-odd and parity-even nonbirefringent components of the Lorentz-violating (K-F)(mu nu alpha beta) tensor. Finally, by using experimental data available in the literature, we have imposed upper bounds as tight as 10(-12) (eV)(-1) on the magnitude of the CPT-even and Lorentz-violating parameters while nonminimally coupled. DOI: 10.1103/PhysRevD.86.125033
Resumo:
We investigate the effect of Lorentz-violating terms on Bhabha scattering in two distinct cases correspondent to vectorial and axial nonminimal couplings in quantum electrodynamics ( QED). In both cases, we find significant modifications with respect to the usual relativistic result. Our results reveal an anisotropy of the differential cross section which implies new constraints on the possible Lorentz-violating terms.
Resumo:
The photons scattered by the Compton effect can be used to characterize the physical properties of a given sample due to the influence that the electron density exerts on the number of scattered photons. However, scattering measurements involve experimental and physical factors that must be carefully analyzed to predict uncertainty in the detection of Compton photons. This paper presents a method for the optimization of the geometrical parameters of an experimental arrangement for Compton scattering analysis, based on its relations with the energy and incident flux of the X-ray photons. In addition, the tool enables the statistical analysis of the information displayed and includes the coefficient of variation (CV) measurement for a comparative evaluation of the physical parameters of the model established for the simulation. (C) 2012 Elsevier B.V. All rights reserved.