6 resultados para sensor network devices

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preserving the enzyme structure in solid films is key for producing various bioelectronic devices, including biosensors, which has normally been performed with nanostructured films that allow for control of molecular architectures. In this paper, we investigate the adsorption of uricase onto Langmuir monolayers of stearic acid (SA), and their transfer to solid supports as Langmuir Blodgett (LB) films. Structuring of the enzyme in beta-sheets was preserved in the form of 1-layer LB film, which was corroborated with a higher catalytic activity than for other uricase-containing LB film architectures where the beta-sheets structuring was not preserved. The optimized architecture was also used to detect uric acid within a range covering typical concentrations in the human blood. The approach presented here not only allows for an optimized catalytic activity toward uric acid but also permits one to explain why some film architectures exhibit a superior performance. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for bioactive molecules to be employed as recognition elements in biosensors has stimulated researchers to pore over the rich Brazilian biodiversity. In this sense, we introduce the use of natural cashew gum (Anacardium occidentale L) as an active biomaterial to be used in the form of layer-by-layer films, in conjunction with phthalocyanines, which were tested as electrochemical sensors for dopamine detection. We investigated the effects of chemical composition of cashew gum from two different regions of Brazil (Piaui and Ceara states) on the physico-chemical characteristics of these nanostructures. The morphology of the nanostructures containing cashew gum was studied by atomic force microscopy which indicates that smooth films punctuated by globular features were formed that showed low roughness values. The results indicate that, independent of the origin, cashew gum stands out as an excellent film forming material with potential application in nanobiomedical devices as electrochemical sensors. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values. (C) 2011 Elsevier By. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to transmit and amplify weak signals is fundamental to signal processing of artificial devices in engineering. Using a multilayer feedforward network of coupled double-well oscillators as well as Fitzhugh-Nagumo oscillators, we here investigate the conditions under which a weak signal received by the first layer can be transmitted through the network with or without amplitude attenuation. We find that the coupling strength and the nodes' states of the first layer act as two-state switches, which determine whether the transmission is significantly enhanced or exponentially decreased. We hope this finding is useful for designing artificial signal amplifiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymers from natural sources are particularly useful as biomaterials for medical devices applications. In this study, the results of characterization of a gelatin network electrolyte doped with europium triflate (Eu(CF3SO3)(3)) are described. The unusual electronic properties of the trivalent lanthanide ions make them well suited as luminescent reporter groups, with many applications in biotechnology. Samples of solvent-free electrolytes were prepared with a range of guest salt concentration. Materials based on Eu(CF3SO3)(3) were obtained as mechanically robust, flexible, transparent, and completely amorphous films. Samples were characterized by thermal analysis (thermo-gravimetry analysis (TGA) and differential scanning calorimetry (DSC), electrochemical stability, scanning electronmicroscopy (SEM), and photoluminescence spectroscopy.