3 resultados para second cycle du secondaire

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastatic breast cancers (MBC) previously treated with anthracyclines (A) and taxanes (T) have a complicated management. Gemcitabine (G)-cisplatin (C) combinations have been used as synergistic salvage therapy in MBC and are considered as another option for patients with important symptoms and aggressive visceral disease. We analyzed the safety and efficacy of GC in AT-pretreated MBC, as well as overall survival (OS) and time to progression (TTP). Forty-nine subjects received IV G 750 mg/m(2) and C 30 mg/m(2), both d1 and d8 every 3 weeks. Response evaluation was performed every second cycle and in the end of treatment. GC protocol was the first-line palliative chemotherapy in half of the cases, and median number of cycles/patient were 4(2-12). Lung (75.5%) was the most frequent site of metastasis. Most of the patients related clinical improvement with chemotherapy with minimal/mild tolerable collateral effects in 85.7% of cases. Following 34 months, mean OS/TTP was 13.12/6.6 months. Objective-responded patients (40.3%) were statistically associated with the improvement in symptoms after CT (P < 0.01), and OS was directly correlated with chemotherapy response (P < 0.01). HER-2 overexpression was a prognostic factor with reduced OS (P = 0.01). GC protocol was effective and tolerable in objective-responded patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evapotranspiration (E) from a sugarcane plantation in the southeast Brazil was measured by the eddy-covariance method during two consecutive cycles. These represented the second (393 similar to days) and third year (374 similar to days) re-growth (ratoon). The total E in the first cycle was 829 similar to mm, accounting for 69% of rainfall, whereas in the second cycle, it was 690 similar to mm, despite the total rainfall (1353 similar to mm) being 13% greater. The ratio of E to available energy, the evaporative fraction, exhibited a smaller variation between the first and second cycles: 0.58 and 0.51, respectively. The estimated interception losses were 88 and 90 similar to mm, respectively, accounting for approximately 7% of the total rainfall. The sugarcane yield in the second cycle (61.5 similar to +/-similar to 4.0 similar to t similar to ha-1) was 26% lower than the first cycle, as well as lower than the regional average for the third ratoon (76 similar to t similar to ha-1). The below average yield was associated with less available soil water at the beginning of the cycle, with the amount of rainfall recorded during the first 120 similar to days of re-growth in the second cycle being 16% of that recorded in the first (203 similar to mm).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluxes of CO2 were measured above a sugarcane plantation using the eddy-covariance method covering two growth cycles, representing the second and third re-growth (ratoons) harvested with stubble burning. The total net ecosystem exchange (NEE) in the first cycle (second ratoon, 393 days long) was −1964 ± 44 g C m−2; the gross ecosystem productivity (GEP) was 3612 ± 46 g C m−2 and the ecosystem respiration (RE) was 1648 ± 14 g C m−2. The NEE and GEP totals in the second cycle (third ratoon, 374 days long) decreased 51% and 25%, respectively and RE increased 7%. Accounting for the carbon emitted during biomass burning and the removal of stalks at harvest, net ecosystem carbon balance (NECB) totals were 102 ± 130 g C m−2 and 403 ± 84 g C m−2 in each cycle respectively. Thus the sugarcane agrosystem was approximately carbon neutral in the second ratoon. Yield in stalks fresh weight (SFW) attained the regional average (8.3 kg SFW m−2). Although it was a carbon source to the atmosphere, observed productivity (6.2 kg SFW m−2) of the third ratoon was 19% lower than the regional average due to the lower water availability observed during the initial 120 days of re-growth. However, the overall water use efficiency (WUE) achieved in the first cycle (4.3 g C kg−1 H2O) decreased only 5% in the second cycle. © 2013 Elsevier B.V. All rights reserved