5 resultados para scope asymmetries
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The saccadic paradigm has been used to investigate specific cortical networks involving visuospatial attention. We examined whether asymmetry in theta and beta band differentiates the role of the hemispheres during the execution of two different prosacadic conditions: a fixed condition, where the stimulus was presented at the same location; and a random condition, where the stimulus was unpredictable. Twelve healthy volunteers (3 male; mean age: 26.25) performed the task while their brain activity pattern was recorded using quantitative electroencephalography. We did not find any significant difference for beta, slow- and fast-alpha frequencies for the pairs of electrodes analyzed. The results for theta band showed a superiority of the left hemisphere in the frontal region when responding to the random condition on the right, which is related to the planning and selection of responses, and also a greater activation of the right hemisphere during the random condition, in the occipital region, related to the identification and recognition of patterns. These results indicate that asymmetries in the premotor area and the occipital cortex differentiate memory- and stimulus-driven tasks. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We report STAR measurements of the longitudinal double-spin asymmetry A(LL), the transverse singlespin asymmetry A(N), and the transverse double-spin asymmetries A(Sigma) and A(TT) for inclusive jet production at mid-rapidity in polarized p + p collisions at a center-of-mass energy of root s = 200 GeV. The data represent integrated luminosities of 7.6 pb(-1) with longitudinal polarization and 1.8 pb(-1) with transverse polarization, with 50%-55% beam polarization, and were recorded in 2005 and 2006. No evidence is found for the existence of statistically significant jet A(N), A(Sigma), or A(TT) at mid-rapidity. Recent model calculations indicate the A(N) results may provide new limits on the gluon Sivers distribution in the proton. The asymmetry A(LL) significantly improves the knowledge of gluon polarization in the nucleon.
Resumo:
In the CP-violating Minimal Supersymmetric Standard Model, we study the production of a neutralino-chargino pair at the LHC. For their decays into three leptons, we analyze CP asymmetries which are sensitive to the CP phases of the neutralino and chargino sector. We present analytical formulas for the entire production and decay process, and identify the CP-violating contributions in the spin correlation terms. This allows us to define the optimal CP asymmetries. We present a detailed numerical analysis of the cross sections, branching ratios, and the CP observables. For light neutralinos, charginos, and squarks, the asymmetries can reach several 10%. We estimate the discovery potential for the LHC to observe CP violation in the trilepton channel.
Resumo:
Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p + p collisions at root s = 62.4 GeV are presented. The PHENIX measurement of the cross sections for 1.0 < p(T) < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong-coupling constant, alpha(s). Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 less than or similar to x(gluon) less than or similar to 0.2, is consistent with recent global parametrizations disfavoring large gluon polarization.
Resumo:
The maintenance of biodiversity is a long standing puzzle in ecology. It is a classical result that if the interactions of the species in an ecosystem are chosen in a random way, then complex ecosystems can't sustain themselves, meaning that the structure of the interactions between the species must be a central component on the preservation of biodiversity and on the stability of ecosystems. The rock-paper-scissors model is one of the paradigmatic models that study how biodiversity is maintained. In this model 3 species dominate each other in a cyclic way (mimicking a trophic cycle), that is, rock dominates scissors, that dominates paper, that dominates rock. In the original version of this model, this dominance obeys a 'Z IND 3' symmetry, in the sense that the strength of dominance is always the same. In this work, we break this symmetry, studying the effects of the addition of an asymmetry parameter. In the usual model, in a two dimensional lattice, the species distribute themselves according to spiral patterns, that can be explained by the complex Landau-Guinzburg equation. With the addition of asymmetry, new spatial patterns appear during the transient and the system either ends in a state with spirals, similar to the ones of the original model, or in a state where unstable spatial patterns dominate or in a state where only one species survives (and biodiversity is lost).