3 resultados para scaling law
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Using theoretical arguments, a simple scaling law for the size of the intrinsic rotation observed in tokamaks in the absence of a momentum injection is found: The velocity generated in the core of a tokamak must be proportional to the ion temperature difference in the core divided by the plasma current, independent of the size of the device. The constant of proportionality is of the order of 10 km . s(-1) . MA . keV(-1). When the intrinsic rotation profile is hollow, i.e., it is countercurrent in the core of the tokamak and cocurrent in the edge, the scaling law presented in this Letter fits the data remarkably well for several tokamaks of vastly different size and heated by different mechanisms.
Resumo:
In this paper we investigate the quantum phase transition from magnetic Bose Glass to magnetic Bose-Einstein condensation induced by amagnetic field in NiCl2 center dot 4SC(NH2)(2) (dichloro-tetrakis-thiourea-nickel, or DTN), doped with Br (Br-DTN) or site diluted. Quantum Monte Carlo simulations for the quantum phase transition of the model Hamiltonian for Br-DTN, as well as for site-diluted DTN, are consistent with conventional scaling at the quantum critical point and with a critical exponent z verifying the prediction z = d; moreover the correlation length exponent is found to be nu = 0.75(10), and the order parameter exponent to be beta = 0.95(10). We investigate the low-temperature thermodynamics at the quantum critical field of Br-DTN both numerically and experimentally, and extract the power-law behavior of the magnetization and of the specific heat. Our results for the exponents of the power laws, as well as previous results for the scaling of the critical temperature to magnetic ordering with the applied field, are incompatible with the conventional crossover-scaling Ansatz proposed by Fisher et al. [Phys. Rev. B 40, 546 (1989)]. However they can all be reconciled within a phenomenological Ansatz in the presence of a dangerously irrelevant operator.
Resumo:
We analyze the transport of heat along a chain of particles interacting through anharmonic potentials consisting of quartic terms in addition to harmonic quadratic terms and subject to heat reservoirs at its ends. Each particle is also subject to an impulsive shot noise with exponentially distributed waiting times whose effect is to change the sign of its velocity, thus conserving the energy of the chain. We show that the introduction of this energy conserving stochastic noise leads to Fourier's law. That is for large system size L the heat current J behaves as J ‘approximately’ 1/L, which amounts to say that the conductivity k is constant. The conductivity is related to the current by J = kΔT/L, where ΔT is the difference in the temperatures of the reservoirs. The behavior of heat conductivity k for small intensities¸ of the shot noise and large system sizes L are obtained by assuming a scaling behavior of the type k = ‘L POT a Psi’(L’lambda POT a/b’) where a and b are scaling exponents. For the pure harmonic case a = b = 1, characterizing a ballistic conduction of heat when the shot noise is absent. For the anharmonic case we found values for the exponents a and b smaller then 1 and thus consistent with a superdiffusive conduction of heat without the shot noise. We also show that the heat conductivity is not constant but is an increasing function of temperature.