37 resultados para rotavirus vaccine
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We conducted a phase I, double-blind, placebo-controlled trial to evaluate a new 5-valent oral rotavirus vaccine’s safety and immunogenicity profiles. Subjects were randomly assigned to receive 3 orally administered doses of a live-attenuated human-bovine (UK) reassortant rotavirus vaccine, containing five viral antigens (G1, G2, G3, G4 and G9), or a placebo. The frequency and severity of adverse events were assessed. Immunogenicity was evaluated by the titers of anti-rotavirus IgA and the presence of neutralizing antibodies anti-rotavirus. No severe adverse events were observed. There was no difference in the frequency of mild adverse events between experimental and control groups. The proportion of seroconversion was consistently higher in the vaccine group, for all serotypes, after each one of the doses. The 5-valent vaccine has shown a good profile of safety and immunogenicity in this small sample of adult volunteers.
Resumo:
The goal of the present study was to evaluate the influence of the influenza A H1N1/2009 vaccine on dermatomyositis/polymyositis (DM/PM) disease parameters and the potential deleterious effect of therapy on immune response. Thirty-seven DM and 21 PM patients (Bohan and Peter's criteria) were gender- and age-matched to 116 healthy controls. Seroprotection, seroconversion, the geometric mean titers (GMTs) and the factor increase (FI) in the GMTs were calculated. Disease safety was determined from a muscle enzyme analysis and the DM/PM scores [patient's visual analog scale (VAS), physician's VAS, manual muscle strength (MMT-8)] evaluated pre- and post-vaccination. The mean age (43.1 +/- 9.9 vs. 43.8 +/- 8.4 years, p = 0.607) and gender distribution (p = 1.00) were comparable between the patients and controls. After 21 days, seroconversion (p = 0.394), seroprotection (p = 0.08), GMT (p = 0.573) and the FI in the GMT (p = 0.496) were similar in both groups. The disease and muscle parameters remained stable throughout the study, including the creatine kinase (p = 0.20) and aldolase levels (p = 0.98), the physicians' VAS (p = 1.00), the patients' VAS (p = 1.00) and the MMT-8 (p = 1.00). Regarding the influence of treatment, the seroconversion rates were comparable between the controls and patients undergoing treatment with glucocorticoid (GC) (p = 0.969), GC >0.5 mg/kg/day (p = 0.395) and GC + immunosuppressors (p = 0.285). Vaccine-related adverse events were mild and similar in the DM/PM and control groups (p > 0.05). Our data support the administration of the pandemic influenza A H1N1/2009 vaccination in DM/PM, as we found no short-term harmful effects related to the disease itself and adequate immunogenicity in spite of therapy. Further studies are necessary to identify any long-term adverse effects in patients with these diseases.(c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Methods. One hundred and twenty patients (RA, n = 41; AS, n = 57; PsA, n = 22) on anti-TNF agents (monoclonal, n = 94; soluble receptor, n = 26) were compared with 116 inflammatory arthritis patients under DMARDs and 117 healthy controls. Seroprotection, seroconversion (SC), geometric mean titre, factor increase in geometric mean titre and adverse events were evaluated 21 days after vaccination. Results. After immunization, SC rates (58.2% vs 74.3%, P = 0.017) were significantly lower in SpA patients receiving anti-TNF therapy, whereas no difference was observed in RA patients receiving this therapy compared with healthy controls (P = 0.067). SpA patients receiving mAbs (infliximab/adalimumab) had a significantly lower SC rate compared with healthy controls (51.6% vs 74.3%, P = 0.002) or those on DMARDs (51.6% vs 74.7%, P = 0.005), whereas no difference was observed for patients on etanercept (86.7% vs 74.3%, P = 0.091). Further analysis of non-seroconverting and seroconverting SpA patients revealed that the former group had a higher mean age (P = 0.003), a higher frequency of anti-TNF (P = 0.031) and mAbs (P = 0.001) and a lower frequency of MTX (P = 0.028). In multivariate logistic regression, only older age (P = 0.015) and mAb treatment (P = 0.023) remained significant factors for non-SC in SpA patients. Conclusion. This study revealed a distinct disease pattern of immune response to the pandemic influenza vaccine in inflammatory arthritis patients receiving anti-TNF agents, illustrated by a reduced immunogenicity solely in SpA patients using mAbs. Trial Registration: ClinicalTrials.gov, ext-link-type="uri" xlink:href="www.clinicaltrials.gov" xmlns:xlink="http://www.w3.org/1999/xlink">www.clinicaltrials.gov, NCT01151644.
Resumo:
An important step when designing a vaccine is identifying the antigens that function as targets of naturally acquired antibodies. We investigated specific antibody responses against two Plasmodium vivax vaccine candidates, PvMSP-1(19) and PvMSP-3 alpha(359-798). Moreover, we assessed the relationship between these antibodies and morbidity parameters. PvMSP-1(19) was the most immunogenic antigen and the frequency of responders to this protein tended to increase in P. vivax patients with higher parasitemia. For both antigens, IgG antibody responses tended to be lower in patients who had experienced their first bout of malaria. Furthermore, anemic patients presented higher IgG antibody responses to PvMSP-3 alpha(359-798). Since the humoral response involves a number of antibodies acting simultaneously on different targets, we performed a Principal Component Analysis (PCA). Anemic patients had, on average, higher first principal component scores (IgG1/IgG2/IgG3/IgG4 anti-MSP3 alpha), which were negatively correlated with hemoglobin levels. Since antibodies against PfMSP-3 have been strongly associated with clinical protection, we cannot exclude the possibility of a dual role of PvMSP-3 specific antibodies in both immunity and pathogenesis of vivax malaria. Our results confirm the high immunogenicity of the conserved C terminus of PvMSP-1 and points to the considerable immunogenicity of polymorphic PvMSP-3 alpha(359-798) during natural infection. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4(+) T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4(+) T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4(+) T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IA(b) and IA(d). Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-gamma secretion against 11 out of the 27 peptides in BALB/c mice; CD4(+) and CD8(+) T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4(+) and CD8(+) T cells, able to simultaneously proliferate and produce IFN-gamma and TNF-alpha, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS.
Resumo:
Objective: To To conduct a cost-effectiveness analysis of a universal childhood hepatitis A vaccination program in Brazil. Methods: An age and time-dependent dynamic model was developed to estimate the incidence of hepatitis A for 24 years. The analysis was run separately according to the pattern of regional endemicity, one for South + Southeast (low endemicity) and one for the North + Northeast + Midwest (intermediate endemicity). The decision analysis model compared universal childhood vaccination with current program of vaccinating high risk individuals. Epidemiologic and cost estimates were based on data from a nationwide seroprevalence survey of viral hepatitis, primary data collection, National Health Information Systems and literature. The analysis was conducted from both the health system and societal perspectives. Costs are expressed in 2008 Brazilian currency (Real). Results: A universal immunization program would have a significant impact on disease epidemiology in all regions, resulting in 64% reduction in the number of cases of icteric hepatitis, 59% reduction in deaths for the disease and a 62% decrease of life years lost, in a national perspective. With a vaccine price of R$16.89 (US$7.23) per dose, vaccination against hepatitis A was a cost-saving strategy in the low and intermediate endemicity regions and in Brazil as a whole from both health system and society perspective. Results were most sensitive to the frequency of icteric hepatitis, ambulatory care and vaccine costs. Conclusions: Universal childhood vaccination program against hepatitis A could be a cost-saving strategy in all regions of Brazil. These results are useful for the Brazilian government for vaccine related decisions and for monitoring population impact if the vaccine is included in the National Immunization Program. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We developed cationic liposomes containing DNA through a conventional process involving steps of (i) preformation of liposomes, (ii) extrusion, (iii) drying and rehydration and (iv) DNA complexation. Owing to its high prophylactic potentiality against tuberculosis, which had already been demonstrated in preclinical assays, we introduced modifications into the conventional process towards getting a simpler and more economical process for further scale-up. Elimination of the extrusion step, increasing the lipid concentration (from 16 to 64 mM) of the preformed liposomes and using good manufacturing practice bulk lipids (96-98% purity) instead of analytical grade purity lipids (99.9-100%) were the modifications studied. The differences in the physico-chemical properties, such as average diameter, zeta potential, melting point and morphology of the liposomes prepared through the modified process, were not as significant for the biological properties, such as DNA loading on the cationic liposomes, and effective immune response in mice after immunisation as the control liposomes prepared through the conventional process. Beneficially, the modified process increased productivity by 22% and reduced the cost of raw material by 75%.
Resumo:
This study investigated the occurrence of rotavirus infections in ostriches (Struthio camelus) reared in Northern Parana, Brazil. Fecal (n = 66) and serum (n = 182) samples from nine farms located in four different cities were analyzed by silver stained-polyacrylamide gel electrophoresis (ss-PAGE), RT-PCR assay, virus isolation, and counterimmunoelectroosmophoresis (CIE). Rotavirus group A seropositivity occurred in 5.49% (10/182) of serum samples of ostriches originated from two farms. Only 9.09% (6/66) of fecal samples from ostriches with diarrhea maintained in one farm were positive by ss-PAGE, RT-PCR, and virus isolation. The G (VP7) and P (VP4) genotypes of rotavirus wild strains isolated in cell culture were determined by multiplex-nested PCR. The genotyping identified two rotavirus strains: G6P[1] and G10P[1]. In three rotavirus strains it was only possible to identify the P type; one strain being P[1] and two strains that presented the combination of P[1] + P[7]. These findings might represent the first characterization of rotavirus in ostriches, and the finding of porcine and bovine-like rotavirus genotypes in ostriches might suggest virus reassortment and possible interspecies transmission. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: The sieve analysis for the Step trial found evidence that breakthrough HIV-1 sequences for MRKAd5/HIV-1 Gag/Pol/Nef vaccine recipients were more divergent from the vaccine insert than placebo sequences in regions with predicted epitopes. We linked the viral sequence data with immune response and acute viral load data to explore mechanisms for and consequences of the observed sieve effect. Methods: Ninety-one male participants (37 placebo and 54 vaccine recipients) were included; viral sequences were obtained at the time of HIV-1 diagnosis. T-cell responses were measured 4 weeks post-second vaccination and at the first or second week post-diagnosis. Acute viral load was obtained at RNA-positive and antibody-negative visits. Findings: Vaccine recipients had a greater magnitude of post-infection CD8+ T cell response than placebo recipients (median 1.68% vs 1.18%; p = 0.04) and greater breadth of post-infection response (median 4.5 vs 2; p = 0.06). Viral sequences for vaccine recipients were marginally more divergent from the insert than placebo sequences in regions of Nef targeted by pre-infection immune responses (p = 0.04; Pol p = 0.13; Gag p = 0.89). Magnitude and breadth of pre-infection responses did not correlate with distance of the viral sequence to the insert (p. 0.50). Acute log viral load trended lower in vaccine versus placebo recipients (estimated mean 4.7 vs 5.1) but the difference was not significant (p = 0.27). Neither was acute viral load associated with distance of the viral sequence to the insert (p>0.30). Interpretation: Despite evidence of anamnestic responses, the sieve effect was not well explained by available measures of T-cell immunogenicity. Sequence divergence from the vaccine was not significantly associated with acute viral load. While point estimates suggested weak vaccine suppression of viral load, the result was not significant and more viral load data would be needed to detect suppression.
Resumo:
Human infections with EHEC such as O157:H7 have been a great concern for worldwide food-industry surveillance. This pathogen is commonly associated with bloody diarrhea that can evolve to the life-threatening hemolytic uremic syndrome. Animals are the natural reservoir where this pathogen remains asymptomatically, in steps of ingestion and colonization of the bowel. The bacterium is shed in the feces, contaminating the surroundings, including water and food that are directed for human consumption. A major player in this colonization process is intimin, an outer membrane adhesion molecule encoded by the E. coli attachment and effacement (eae) gene that has been shown to be essential for intimate bacterial attachment to eukaryotic host cells. In an attempt to reduce the colonization of animal reservoirs with EHEC O157:H7, we designed a vaccine model to induce an immune response against intimin gamma. The model is based on its recombinant expression in attenuated Salmonella, used as a suitable vaccine vector because of its recognized ability to deliver recombinant antigens and to elicit all forms of immunity: mucosal, systemic, and humoral responses. To test this model, mice were orally immunized with a S. enterica serovar Typhimurium strain carrying the pYA3137eaeA vector, and challenged with E. coli O157:H7. Here we show that immunization induced the production of high levels of specific IgG and IgA antibodies and promoted reduction in the fecal shedding of EHEC after challenge. The live recombinant vaccine reported herein may contribute to the efforts of reducing animal intestinal mucosa colonization.
Resumo:
Rotavirus is an important cause of neonatal diarrhea in humans and several animal species, including calves. A study was conducted to examine 792 fecal samples collected from calves among 65 dairy and beef herds distributed in two of Brazil's major livestock producing regions, aiming to detect the occurrence of rotavirus and perform a molecular characterization of the rotavirus according to G and P genotypes in these regions. A total of 40 (5.05%) samples tested positive for rotavirus by the polyacrylamide gel electrophoresis (PAGE) technique. The molecular characterization was performed by multiplex semi-nested RT-PCR reactions, which indicated that the associations of genotypes circulating in herds in Brazil's southeastern region were G6P[11], G10P[11], G[-]P[5] + [11], G[-]P[6] in the state of Sao Paulo and G6P[11], G8P[5], G11P[11], G10P[11] in the state of Minas Gerais. In the central-western region, the genotypes G6P[5] + [11], G6P[5], G8P[-], G6P[11], G [-] P[1], G[-] P[11], and G[-] P[5] were detected in the state of Goias, while the genotypes G6P[5], G8[P11], G6[P11], G8[P1], G8[P5], G6[P1] were circulating in herds in the state of Mato Grosso do Sul. The genotypic diversity of bovine rotavirus found in each region under study underlines the importance of characterizing the circulating samples in order to devise the most effective prophylactic measures.
Resumo:
Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500 000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver and bone marrow lesions and excreted in the patients urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1) and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in Escherichia coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2+ BpMPLA-SE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to VL and opens novel possibilities for vaccine development to other serious infectious diseases.
Resumo:
Paracoccidioidomycosis is a granulomatous pulmonary infection that is generally controlled by chemotherapy. The efficacy of treatment, however, is limited by the status of the host immune response. The inhibition of a Th-2 immunity or the stimulation of Th-1 cytokines generally increases the efficacy of antifungal drugs.(1) This has been achieved by immunization with an internal peptide of the major diagnostic antigen gp43 of Paracoccidioides brasiliensis. Peptide 10 (QTLIAIHTLAIRYAN) elicits an IFN-gamma rich Th-1 immune response that protects against experimental intratracheal infection by this fungus. The combination of chemotherapy with P10 immunization showed additive protective effect even after 30 d of infection or in anergic mice, rendering in general, increased production of IL-12 and IFN-gamma and reduction of IL-4 and IL-10. Immunotherapy with P10 even in the absence of simultaneous chemotherapy has been effective using various protocols, adjuvants, nanoparticles, P10-primed dendritic cells, and especially a combination of plasmids encoding the P10 minigene and IL-12. Gene therapy, in a long-term infection protocol succeeded in the virtual elimination of the fungus, preserving the lung structure, free from immunopathological side effects.
Resumo:
Children and adolescents infected with HIV typically have a lower response to immunization than do those in the general population. In most developed countries, meningococcal serogroup C conjugate vaccine is one of the recommended vaccines for such individuals. However, there have been no studies evaluating the antibody response to this vaccine in HIV-infected children, adolescents or young adults. In this study, we evaluated that response using serum bactericidal antibody (SBA) and enzyme-linked immunosorbent assay, comparing HIV-infected with non-HIV-infected patients, as well as analysing the occurrence of side effects. In non-responders, we assessed the antibody response to revaccination. This clinical trial involved 92 patients between 10 and 20 years of age: 43 HIV-infected patients (HIV+ group) and 49 non-HIV-infected patients (HIV- group). After one dose of the vaccine, 72.1% of the HIV+ group patients and 100% of the HIV- group patients were considered protected. Of the HIV+ group patients who received a second dose of the vaccine, only 40% acquired protection. Overall, 81.4% of the HIV+ group patients acquired protection (after one or two doses of the vaccine). Side effects occurred in 16.3% and 44% of the HIV+ group and HIV- group patients, respectively. Therefore, the meningococcal serogroup C conjugate vaccine proved to be safe and effective for use in HIV-infected children, adolescents, and young adults, although their antibody response was weaker than that shown by non-HIV-infected patients. This indicates the need to discuss changes to the immunization schedule for children, adolescents, and young adults infected with HIV, in order to ensure more effective protection against meningococcal disease. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Santos M.B., Martini M.C., Ferreira H.L., Silva L.H.A., Fellipe P.A., Spilki F.R. & Arns C.W. 2012. Brazilian avian metapneumovirus subtypes A and B: experimental infection of broilers and evaluation of vaccine efficacy. Pesquisa Veterinaria Brasileira 32(12):1257-1262. Laboratorio de Virologia, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato s/n, Cx. Postal 6109, Campinas, SP 13083-970, Brazil. E-mail: arns@unicamp.br Avian metapneumovirus (aMPV) is a respiratory pathogen associated with the swollen head syndrome (SHS) in chickens. In Brazil, live aMPV vaccines are currently used, but subtypes A and, mainly subtype B (aMPV/A and aMPV/B) are still circulating. This study was conducted to characterize two Brazilian aMPV isolates (A and B subtypes) of chicken origin. A challenge trial to explore the replication ability of the Brazilian subtypes A and B in chickens was performed. Subsequently, virological protection provided from an aMPV/B vaccine against the same isolates was analyzed. Upon challenge experiment, it was shown by virus isolation and real time PCR that aMPV/B could be detected longer and in higher amounts than aMPV/A. For the protection study, 18 one-day-old chicks were vaccinated and challenged at 21 days of age. Using virus isolation and real time PCR, no aMPV/A was detected in the vaccinated chickens, whereas one vaccinated chicken challenged with the aMPV/B isolate was positive. The results showed that aMPV/B vaccine provided a complete heterologous virological protection, although homologous protection was not complete in one chicken. Although only one aMPV/B positive chicken was detected after homologous vaccination, replication in vaccinated animals might allow the emergence of escape mutants.