22 resultados para root growth media
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Bacterial adhesion to inert surfaces is a complex process influenced by environmental conditions. In this work, the influence of growth medium and temperature on the adhesion of Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Micrococcus luteus and Listeria monocytogenes to polystyrene surfaces was studied. Most bacteria demonstrated the highest adhesion when cultured in TSYEA, except S. marcescens, which showed to be positively influenced by the pigment production, favored in poor nutrient media (lactose and peptone agar). P. aeruginosa adhesion to polystyrene increased at low temperatures whatever the medium used. The culture medium influenced the surface properties of the bacteria as assessed by the MATS test.
Resumo:
Background: Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. Methodology/Principal Findings: We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. Conclusions/Significance: Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this ubiquitous endophyte with the host plant, and also to a better use of microbial endophytes in agriculture.
Resumo:
Bacterial adhesion to inert surfaces is a complex process influenced by environmental conditions. In this work, the influence of growth medium and temperature on the adhesion of Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Micrococcus luteus and Listeria monocytogenes to polystyrene surfaces was studied. Most bacteria demonstrated the highest adhesion when cultured in TSYEA, except S. marcescens, which showed to be positively influenced by the pigment production, favored in poor nutrient media (lactose and peptone agar). P. aeruginosa adhesion to polystyrene increased at low temperatures whatever the medium used. The culture medium influenced the surface properties of the bacteria as assessed by the MATS test.
Resumo:
O tamanho médio de partículas e a porosidade dos substratos condicionam as propriedades matriciais, interferindo na capacidade de retenção e de transmissão da água no meio. O conhecimento desses atributos é fundamental em processos de irrigação por capilaridade, para que o molhamento atinja as camadas superiores dos recipientes com níveis de tensão de água facilmente disponível. O presente trabalho teve como objetivo estudar a ascensão de água por capilaridade para determinar a posição mais apropriada do nível de saturação na ascensão capilar em recipientes com substratos de coco e pinus, de textura grossa e fina. Foram efetuados experimentos avaliando a ascensão de água por capilaridade em colunas segmentadas preenchidas com os substratos. Os valores de umidade em cada segmento foram calculados gravimetricamente e relacionados aos de tensão estimados pela curva de tensão dos substratos. Os substratos com textura fina apresentaram melhor elevação de água por capilaridade, com melhor elevação da umidade em níveis de tensão de água disponível. O substrato de coco fino apresentou água disponível em todo o perfil do recipiente, enquanto o de pinus apresentou as camadas superiores do recipiente com água retida em tensões abaixo do ponto de murcha permanente. O substrato fino de coco apresentou os melhores resultados para aplicação na irrigação por capilaridade, permitindo recomendar o seu uso com o nível de saturação posicionado a cinco centímetros do fundo do recipiente por quinze minutos.
Resumo:
Objective: Optimal surgical treatment of patients with transposition of the great arteries (TGA), ventricular septal defect (VSD), and pulmonary stenosis (PS) remains a matter of debate. This study evaluated the clinical outcome and right ventricle outflow tract performance in the long-term follow-up of patients subjected to pulmonary root translocation (PRT) as part of their surgical repair. Methods: From April 1994 to December 2010, we operated on 44 consecutive patients (median age, 11 months). All had malposition of the great arteries as follows: TGA with VSD and PS (n = 33); double-outlet right ventricle with subpulmonary VSD (n = 7); double-outlet right ventricle with atrioventricular septal defect (n = 1); and congenitally corrected TGA with VSD and PS (n 3). The surgical technique consisted of PRT from the left ventricle to the right ventricle after construction of an intraventricular tunnel that diverted blood flow from the left ventricle to the aorta. Results: The mean follow-up time was 72 +/- 52.1 months. There were 3 (6.8%) early deaths and 1 (2.3%) late death. Kaplan-Meier survival was 92.8% and reintervention-free survival was 82.9% at 12 years. Repeat echocardiographic data showed nonlinear growth of the pulmonary root and good performance of the valve at 10 years. Only 4 patients required reinterventions owing to right ventricular outflow tract problems. Conclusions: PRT is a good surgical alternative for treatment of patients with TGA complexes, VSD, and PS, with acceptable operative risk, high long-term survivals, and few reinterventions. Most patients had adequate pulmonary root growth and performance. (J Thorac Cardiovasc Surg 2012;143:1292-8)
Resumo:
Calcium (Ca) and boron (B) have been reported as the major macro-and micronutrient required for castor bean plant yield. The objective of this study was to determine the Ca: B ratios (in the growth media and plant tissue) for fruit yield and shoot dry weight of the castor bean (Ricinus communis L.), grown in a nutrient solution, and to evaluate Ca and B supply on concentration and total uptake of Ca, potassium (K), magnesium (Mg), and B, as well on the seed oil content. The treatments were arranged in a 3 x 3 factorial fashion, consisting of three rates of Ca (40, 80, and 160 mg L-1) and three of B (0.32, 0.96, and 1.60 mg L-1). Calcium and B rates increased the shoot and root dry weight and fruit yield at a Ca: B ratio in the nutrient solution of 166 and 100, respectively. Symptoms of B deficiency were observed in plants supplied with 0.32 mg B L-1, regardless of the Ca concentration in the nutrient solution. Plants which showed visual symptoms of Ca deficiency cultivated with 40 mg Ca L-1 presented concentration of Ca in plant tissue up to 10 g kg(-1). The concentration and total Ca and B uptake increased with the rates of them. Notwithstanding, the shoot Ca accumulation was improved by B rates. In addition, there were no decreases in K and Mg uptake due to Ca rates. Furthermore, addition of 80 mg L-1 of Ca and 1.60 mg L-1 of B in the growth media increased the seed oil content. The Ca: B ratio in the diagnostic leaf associated with the highest plant dry weight (shoot and root) and fruit yield, was 500 (16 to 20 g kg(-1) of Ca, and for 30 to 40 mg kg(-1) of B).
Resumo:
Crop residues returned to the soil are important to preserve fertility and sustainability. This research addressed the long-term decomposition of sugarcane post-harvest residues (trash) under reduced tillage, therefore field renewal was performed with herbicide followed by subsoiling and ratoons were deprived of interrow scarification. The trial was conducted in the northern Sao Paulo State, Brazil during four consecutive crops (2005-2008) where litter bags containing N-15-labeled trash were disposed in the field attempting to simulate two distinct situations: the previous crop trash (PCT) or residues incorporated in the field after tillage, and post-harvest trash (PHT) or the remains of plant-cane harvest. Decomposition rates regarding dry matter (DM), carbon (C), root growth, plant nutrients (N, P, K, Ca, Mg and S), lignin (LIG) cellulose (CEL) and hemicellulose (HCEL) contents were assessed for PCT (2005 ndash;2008) and for PHT (2006-2008). There were significant reductions on DM and C:N ratio due to C losses and root growth within the litter bags over time. The DM from PCT and PHT decreased 96% and 73% after four and three crops, respectively, and the higher nutrients release were found for K, Ca and N. The LIG, CEL and HCEL concentrations in PCT decreased 60%, 29%, 70% after four crops and 47%, 35%, 70% from PHT after three crops, respectively. Trash decomposition was driven mainly by residues biochemical composition, root growth within the trash blanket and the climatic conditions during the crop cycles. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The increasing resistance of Rhipicephalus (Boophilus) microplus tick to commercial insecticides requires alternative methods for the control of this cattle plague. The enthomopathogenic fungus Beauveria feline produces destruxins in culture media, cyclic depsipeptides which display an array of biological activities. The present investigation aimed to evaluate the acaricide action of destruxins isolated from B. felina culture media on R. (B.) microplus engorged females. B. felina was grown in MF medium under 19 different growth conditions. HPLC-PDA analysis of chromatographic fractions obtained from the 19 different growth media extracts indicated the presence of destruxins in all lipophylic fractions. Such fractions were combined and subjected to separation by HPLC. Fractions containing distinct destruxins composition were tested against R. (B.) micro plus. Two fractions, composed of destruxin Ed(1) and pseudodestruxin B and/or pseudodestruxin C (fraction P1) as well as by hydroxyhomodestruxin B and/or destruxin D and/or roseotoxin C (fraction P7), displayed 30% and 28.7% acaricidal efficacy, respectively. This activity profile in such low concentration is adequate to consider destruxins as potential leading compounds to be developed for tick biological control. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporinrelated products, but used as an additional carbon and energy source for growth. This low efficiency of side-chain precursor incorporation provides an economic incentive for studying and engineering the metabolism of adipic acid in P. cluysogenum. Chemostat-based transcriptome analysis in the presence and absence of adipic acid confirmed that adipic acid metabolism in this fungus occurs via beta-oxidation. A set of 52 adipate-responsive genes included six putative genes for acyl-CoA oxidases and dehydrogenases, enzymes responsible for the first step of beta-oxidation. Subcellular localization of the differentially expressed acyl-CoA oxidases and dehydrogenases revealed that the oxidases were exclusively targeted to peroxisomes, while the dehydrogenases were found either in peroxisomes or in mitochondria. Deletion of the genes encoding the peroxisomal acyl-CoA oxidase Pc20g01800 and the mitochondrial acyl-CoA dehydrogenase Pc20g07920 resulted in a 1.6- and 3.7-fold increase in the production of the semi-synthetic cephalosporin intermediate adipoyl-6-APA, respectively. The deletion strains also showed reduced adipate consumption compared to the reference strain, indicating that engineering of the first step of beta-oxidation successfully redirected a larger fraction of adipic acid towards cephalosporin biosynthesis. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Water pollution caused by toxic cyanobacteria is a problem worldwide, increasing with eutrophication. Due to its biological significance, genotoxicity should be a focus for biomonitoring pollution owing to the increasing complexity of the toxicological environment in which organisms are exposed. Cyanobacteria produce a large number of bioactive compounds, most of which lack toxicological data. Microcystins comprise a class of potent cyclic heptapeptide toxins produced mainly by Microcystis aeruginosa. Other natural products can also be synthesized by cyanobacteria, such as the protease inhibitor, aeruginosin. The hepatotoxicity of microcystins has been well documented, but information on the genotoxic effects of aeruginosins is relatively scarce. In this study, the genotoxicity and ecotoxicity of methanolic extracts from two strains of M. aeruginosa NPLJ-4, containing high levels of microcystin, and M. aeruginosa NPCD-1, with high levels of aeruginosin, were evaluated. Four endpoints, using plant assays in Allium cepa were applied: rootlet growth inhibition, chromosomal aberrations, mitotic divisions, and micronucleus assays. The microcystin content of M. aeruginosa NPLJ-4 was confirmed through ELISA, while M. aeruginosa NPCD-1 did not produce microcystins. The extracts of M. aeruginosa NPLJ-4 were diluted at 0.01, 0.1, 1 and 10 ppb of microcystins: the same procedure was used to dilute M. aeruginosa NPCD-1 used as a parameter for comparison, and water was used as the control. The results demonstrated that both strains inhibited root growth and induced rootlet abnormalities. The strain rich in aeruginosin was more genotoxic, altering the cell cycle, while microcystins were more mitogenic. These findings indicate the need for future research on non-microcystin producing cyanobacterial strains. Understanding the genotoxicity of M. aeruginosa extracts can help determine a possible link between contamination by aquatic cyanobacteria and high risk of primary liver cancer found in some areas as well as establish water level limits for compounds not yet studied. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background Prior to the selection of disinfectants for low, intermediate and high (sterilizing) levels, the decimal reduction time, D-value, for the most common and persistent bacteria identified at a health care facility should be determined. Methods The D-value was determined by inoculating 100 mL of disinfecting solution with 1 mL of a bacterial suspension (104 – 105 CFU/mL for vegetative and spore forms). At regular intervals, 1 mL aliquots of this mixture were transferred to 8 mL of growth media containing a neutralizing agent, and incubated at optimal conditions for the microorganism. Results The highest D-values for various bacteria were determined for the following solutions: (i) 0.1% sodium dichloroisocyanurate (pH 7.0) – E. coli and A. calcoaceticus (D = 5.9 min); (ii) sodium hypochlorite (pH 7.0) at 0.025% for B. stearothermophilus (D = 24 min), E. coli and E. cloacae (D = 7.5 min); at 0.05% for B. stearothermophilus (D = 9.4 min) and E. coli (D = 6.1 min) and 0.1% for B. stearothermophilus (D = 3.5 min) and B. subtilis (D = 3.2 min); (iii) 2.0% glutaraldehyde (pH 7.4) – B. stearothermophilus, B. subtilis (D = 25 min) and E. coli (D = 7.1 min); (iv) 0.5% formaldehyde (pH 6.5) – B. subtilis (D = 11.8 min), B. stearothermophilus (D = 10.9 min) and A. calcoaceticus (D = 5.2 min); (v) 2.0% chlorhexidine (pH 6.2) – B. stearothermophilus (D = 9.1 min), and at 0.4% for E. cloacae (D = 8.3 min); (vi) 1.0% Minncare® (peracetic acid and hydrogen peroxide, pH 2.3) – B. stearothermophilus (D = 9.1 min) and E. coli (D = 6.7 min). Conclusions The suspension studies were an indication of the disinfectant efficacy on a surface. The data in this study reflect the formulations used and may vary from product to product. The expected effectiveness from the studied formulations showed that the tested agents can be recommended for surface disinfection as stated in present guidelines and emphasizes the importance and need to develop routine and novel programs to evaluate product utility.
Resumo:
In the present investigation we evaluate methods for the isolation and growth of marine-derived fungal strains in artificial media for the production of secondary metabolites. Inoculation of marine macroorganisms fragments in Petri dishes proved to be the most convenient procedure for the isolation of the largest number of strains. Among the growth media used, 3% malt extract showed the best result for strains isolation and growth, and yielded the largest number of strains from marine macroorganisms. The percentage of strains isolated using each of the growth media which yielded cytotoxic and/or antibiotic extracts was in the range of 23-35%, regardless of the growth media used. Further investigation of extracts obtained from different marine-derived fungal strains yielded several bioactive secondary metabolites, among which (E)-4-methoxy-5-(3-methoxybut-1-enyl)-6-methyl-2H-pyran-2-one is a new metabolite isolated from the Penicillium paxilli strain Ma(G)K.
Resumo:
Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Clonal eucalyptus plantings have increased in recent years; however, some clones with high production characteristics have vegetative propagation problems because of weak root and aerial development. Endophytic microorganisms live inside healthy plants without causing any damage to their hosts and can be beneficial, acting as plant growth promoters. We isolated endophytic bacteria from eucalyptus plants and evaluated their potential in plant growth promotion of clonal plantlets of Eucalyptus urophylla x E. grandis, known as the hybrid, E. urograndis. Eighteen isolates of E. urograndis, clone 4622, were tested for plant growth promotion using the same clone. These isolates were also evaluated for indole acetic acid production and their potential for nitrogen fixation and phosphate solubilization. The isolates were identified by partial sequencing of 16S rRNA. Bacillus subtilis was the most prevalent species. Several Bacillus species, including B. licheniformis and B. subtilis, were found for the first time as endophytes of eucalyptus. Bacillus sp strain EUCB 10 significantly increased the growth of the root and aerial parts of eucalyptus plantlets under greenhouse conditions, during the summer and winter seasons.
Resumo:
The growth parameters (growth rate, mu and lag time, lambda) of three different strains each of Salmonella enterica and Listeria monocytogenes in minimally processed lettuce (MPL) and their changes as a function of temperature were modeled. MPL were packed under modified atmosphere (5% O-2, 15% CO2 and 80% N-2), stored at 7-30 degrees C and samples collected at different time intervals were enumerated for S. enterica and L monocytogenes. Growth curves and equations describing the relationship between mu and lambda as a function of temperature were constructed using the DMFit Excel add-in and through linear regression, respectively. The predicted growth parameters for the pathogens observed in this study were compared to ComBase, Pathogen modeling program (PMP) and data from the literature. High R-2 values (0.97 and 0.93) were observed for average growth curves of different strains of pathogens grown on MPL Secondary models of mu and lambda for both pathogens followed a linear trend with high R2 values (>0.90). Root mean square error (RMSE) showed that the models obtained are accurate and suitable for modeling the growth of S. enterica and L monocytogenes in MP lettuce. The current study provides growth models for these foodborne pathogens that can be used in microbial risk assessment. (C) 2011 Elsevier Ltd. All rights reserved.