10 resultados para reuse of wastes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Significant amounts of wastes are generated by the coffee industry, among of which, coffee silverskin (CS) and spent coffee grounds (SCG) are the most abundantly generated during the beans roasting and instant coffee preparation, respectively. This study evaluated the sugars metabolism and production of ethanol by three different yeast strains (Saccharomyces cerevisiae, Pichia stipitis and Kluyveromyces fragilis) when cultivated in sugar rich hydrolysates produced by acid hydrolysis of CS and SCG. S. cerevisiae provided the best ethanol production from SCG hydrolysate (11.7 g/l, 50.2% efficiency). On the other hand, insignificant (<= 1.0 g/l) ethanol production was obtained from CS hydrolysate, for all the evaluated yeast strains, probably due to the low sugars concentration present in this medium (approx. 22 g/l). It was concluded that it is possible to reuse SCG as raw material for ethanol production, which is of great interest for the production of this biofuel, as well as to add value to this agro-industrial waste. CS hydrolysate, in the way that is produced, was not a suitable fermentation medium for ethanol production; however, the hydrolysate concentration for the sugars content increase previous the use as fermentation medium could be an alternative to overcome this problem. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A polyacrylamide hydrogel containing the Chelex-100 resin has traditionally been used as the binding agent for the diffusion gradients in thin films (DGT) technique. The Chelex-100 resin, although important for the determination of various transition metals, is unsatisfactory for the determination of alkaline earth metals, particularly Ba. In this paper, a cellulose membrane, treated with phosphate (P81 membrane), was evaluated as a binding agent for DGT devices for the determination of Ba in produced formation water (PEW) samples. In addition, diffusive layers of filter paper (cellulose) were tested to diffuse Ba through the DGT devices. Experiments to evaluate the key variables of the technique (pH, deployment time, and ionic strength/salinity) were performed. The Ba sampled by these DGT devices was measured using inductively coupled plasma optical emission spectrometry. Aiming to generate information (related to bioavailability of Ba) on the reuse of PEW for irrigation, the determination of Ba in onshore and offshore samples was performed. The new approach was effective for determination of Ba in onshore samples. To determine Ba in offshore samples, it was necessary to use an alternative calibration procedure due to the high NaCl concentration in these samples. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the microbial growth on single-use vitrectomy probes reprocessed in healthcare practice. We investigated nine vitrectomy probes that had been reused and reprocessed using different methods. The samples were sectioned, individually, in portions of 3.5 cm, totaling 979 sampling units (extensions, connectors and vitrectomy cutters), which were inoculated in culture medium and incubated at 37 C for 14 days. The results showed microbial growth on 57 (5.8%) sample units, 25 of which had been sterilized using ethylene oxide, 16 by hydrogen peroxide plasma, and 16 by low-temperature steam and formaldehyde. Seventeen microbial species were identified. The most prevalent were: Micrococcus spp., coagulase-negative Staphylococcus, Pseudomonas spp., and Bacillus subtilis. The reuse of single-use vitrectomy probes was shown to be unsafe, therefore this practice is not recommended.
Resumo:
Development within the cleidoic egg of birds and reptiles presents the embryo with the problem of accumulation of wastes from nitrogen metabolism. Ammonia derived from protein catabolism is converted into the less toxic product urea or relatively insoluble uric acid. The pattern of nitrogen excretion of the green iguana, Iguana iguana, was determined during embryonic development using samples from allantoic fluid and from the whole homogenized egg, and in hatchlings and adults using samples of blood plasma. Urea was the major excretory product over the course of embryonic development. It was found in higher concentrations in the allantoic sac, suggesting that there is a mechanism present on the allantoic membrane enabling the concentration of urea. The newly hatched iguana still produced urea while adults produced uric acid. The time course of this shift in the type of nitrogen waste was not determined but the change is likely to be related to the water relations associated with the terrestrial habit of the adult. The green iguana produces parchment-shelled eggs that double in mass during incubation due to water absorption: the eggs also accumulate 0.02 mM of urea, representing 82% of the total measured nitrogenous residues that accumulate inside the allantois. The increase in egg mass and urea concentration became significant after 55 days of incubation then were unchanged until hatching. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Over the last years, a number of researchers have investigated how to improve the reuse of crosscutting concerns. New possibilities have emerged with the advent of aspect-oriented programming, and many frameworks were designed considering the abstractions provided by this new paradigm. We call this type of framework Crosscutting Frameworks (CF), as it usually encapsulates a generic and abstract design of one crosscutting concern. However, most of the proposed CFs employ white-box strategies in their reuse process, requiring two mainly technical skills: (i) knowing syntax details of the programming language employed to build the framework and (ii) being aware of the architectural details of the CF and its internal nomenclature. Also, another problem is that the reuse process can only be initiated as soon as the development process reaches the implementation phase, preventing it from starting earlier. Method In order to solve these problems, we present in this paper a model-based approach for reusing CFs which shields application engineers from technical details, letting him/her concentrate on what the framework really needs from the application under development. To support our approach, two models are proposed: the Reuse Requirements Model (RRM) and the Reuse Model (RM). The former must be used to describe the framework structure and the later is in charge of supporting the reuse process. As soon as the application engineer has filled in the RM, the reuse code can be automatically generated. Results We also present here the result of two comparative experiments using two versions of a Persistence CF: the original one, whose reuse process is based on writing code, and the new one, which is model-based. The first experiment evaluated the productivity during the reuse process, and the second one evaluated the effort of maintaining applications developed with both CF versions. The results show the improvement of 97% in the productivity; however little difference was perceived regarding the effort for maintaining the required application. Conclusion By using the approach herein presented, it was possible to conclude the following: (i) it is possible to automate the instantiation of CFs, and (ii) the productivity of developers are improved as long as they use a model-based instantiation approach.
Resumo:
The worldwide production of bamboo generates large volumes of leaf wastes, which are deposited in landfills or burned in an uncontrolled manner, with negative effects in the environment. The ash obtained by calcining of the bamboo leaf waste, shows good qualities as supplementary cementing material for the production of blended cements. The current paper shows a detailed scientific study of a Brazilian bamboo leaf ash (BLA) calcined at 600 degrees C in small scale condition, by using different techniques (XRF, XRD, SEM/EDX, FT-IR, TG/DTG) and technical study in order. to analyse the behaviour of this ash in blended cements elaborated with 10% and 20% by mass of BLA. The results stated that this ash shows a very high pozzolanic activity, with a reaction rate constant K of the order of 10(-1)/h and type I CSH gel was the main hydrated phase obtained from pozzolanic reaction. The BLA blended cements (10% and 20%) complied with the physical and mechanical requirements of the existing European standards. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work addresses the synthesis of carbon nanomaterials (CNMs) by up-cycling common solid wastes. These feedstocks could supersede the use of costly and often toxic or highly flammable chemicals, such as hydrocarbon gases, carbon monoxide, and hydrogen, which are commonly used as feedstocks in current nanomanufacturing processes for CNMs. Agricultural sugar cane bagasse and corn residues, scrap tire chips, and postconsumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings were either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation. The resulting gaseous carbon-bearing effluents were then channeled into a heated reactor. CNMs, including carbon nanotubes, were catalytically synthesized therein on stainless steel meshes. This work revealed that the structure of the resulting CNMs is determined by the feedstock type, through the disparate mixtures of carbon-bearing gases generated when different feedstocks are pyrolyzed. CNM characterization was conducted by scanning and transmission electron microscopy as well as by Raman spectroscopy and by thermogravimetric analysis. Gas chromatography was used to characterize the gases in the synthesis chamber. This work demonstrated an alternative method for efficient manufacturing of CNMs using both biodegradable and nonbiodegradable agricultural and municipal carbonaceous wastes.
Resumo:
The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in Sao Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg(-1) dry soil), during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.
Resumo:
Bromelain is an aqueous extract of pineapple that contains a complex mixture of proteases and non-protease components. These enzymes perform an important role in proteolytic modulation of the cellular matrix in numerous physiologic processes, including anti-inflammatory, anti-thrombotic and fibrinolytic functions. Due to the scale of global production of pineapple (Ananas comosus L.), and the high percentage of waste generated in their cultivation and processing, several studies have been conducted on the recovery of bromelain. The aim of this study was to purify bromelain from pineapple wastes using an easy-to-scale-up process of precipitation by ethanol. The results showed that bromelain was recovered by using ethanol at concentrations of 30% and 70%, in which a purification factor of 2.28 fold was achieved, and yielded more than 98% of the total enzymatic activity. This enzyme proved to be susceptible to denaturation after the lyophilization process. However, by using 10% (w/v) glucose as a cryoprotector, it was possible to preserve 90% of the original enzymatic activity. The efficiency of the purification process was confirmed by SDS-PAGE, and native-PAGE electrophoresis, fluorimetry, circular dichroism and FTIR analyzes, showing that this method could be used to obtain highly purified and structurally stable bromelain. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil), during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.