8 resultados para resin bonding
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objectives. To purpose a method for predicting the shrinkage stress development in the adhesive layer of resin-composite cylinders that shrink bonded to a single flat surface, by measuring the deflection of a glass coverslip caused by the shrinkage of the bonded cylinders. The correlation between the volume of the bonded resin-composite and the stress-peak was also investigated. Methods. A glass coverslip deflection caused by the shrinkage of a bonded resin-composite cylinder (diameter: d = 8 mm, 4 mm, or 2 mm, height: h = 4 mm, 2 mm, 1 mm, or 0.5 mm) was measured, and the same set-up was simulated by finite element analysis (3D-FEA). Stresses generated in the adhesive layer were plotted versus two geometric variables of the resin-composite cylinder (C-Factor and volume) to verify the existence of correlations between them and stresses. Results. The FEA models were validated. A significant correlation (p < 0.01, Pearson's test) between the stress-peak and the coverslip deflection when the resin-composites were grouped by diameter was found for diameters of 2 and 4 mm. The stress-peak of the whole set of data showed a logarithmic correlation with the bonded resin-composite volume (p < 0.001, Pearson's test), but did not correlate with the C-Factor. Significance. The described method should be considered for standardizing the stress generated by the shrinkage of resin-composite blocks bonded to a single flat surface. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to evaluate the effect of different heat-treatment strategies for a ceramic primer on the shear bond strength of a 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-based resin cement to a yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Specimens measuring 4.5 x 3.5 x 4.5 mm(3) were produced from Y-TZP presintered cubes and embedded in polymethyl methacrylate (PMMA). Following finishing, the specimens were cleaned using an ultrasound device and distilled water and randomly divided into 10 experimental groups (n=14) according to the heat treatment of the ceramic primer and aging condition. The strategies used for the experimental groups were: GC (control), without primer; G20, primer application at ambient temperature (20 degrees C); G45, primer application + heat treatment at 45 degrees C; G79, primer application + heat treatment at 79 degrees C; and G100, primer application + heat treatment at 100 degrees C. The specimens from the aging groups were submitted to thermal cycling (6000 cycles, 5 degrees C/55 degrees C, 30 seconds per bath) after 24 hours. A cylinder of MDP-based resin cement (2.4 mm in diameter) was constructed on the ceramic surface of the specimens of each experimental group and stored for 24 hours at 37 degrees C. The specimens were submitted to a shear bond strength test (n=14). Thermal gravimetric analysis was performed on the ceramic primer. The data obtained were statistically analyzed by two-way analysis of variance and the Tukey test (alpha=0.05). The experimental group G79 without aging (7.23 +/- 2.87 MPa) presented a significantly higher mean than the other experimental groups without aging (GC: 2.81 +/- 1.5 MPa; G20: 3.38 +/- 2.21 MPa; G100: 3.96 +/- 1.57 MPa), showing no difference from G45 only (G45: 6 +/- 3.63 MPa). All specimens of the aging groups debonded during thermocycling and were considered to present zero bond strength for the statistical analyses. In conclusion, heat treatment of the metal/zirconia primer improved bond strength under the initial condition but did not promote stable bonding under the aging condition.
Resumo:
This study examined the immediate bond strength of etch-and-rinse adhesives to demineralized dentin saturated with either water or absolute ethanol. The research hypothesis was that there would be no difference in bond strength to dentin between water or ethanol wet-bonding techniques. The medium dentin of 20 third molars was exposed (n = 5). The dentin surface was then acid-etched, left moist and randomly assigned to be saturated via either water wet-bonding (WBT) or absolute ethanol wet-bonding (EBT). The specimens were then treated with one of the following etch-and-rinse adhesive systems: a 3-step, water-based system (Adper Scotchbond Multipurpose, or SBMP) or a 2-step, ethanol/water-based system (Adper Single Bond 2, or SB). Resin composite build-ups were then incrementally constructed. After water storage for 24 h at 37 degrees C, the tensile strength of the specimens was tested in a universal testing machine (0.5 mm/min). Data were analyzed by two-way ANOVA and Tukey's test (alpha = 5%). The failure modes were verified using a stereomicroscope (40x). For both adhesives, no significant difference in bond strength was observed between WBT and EBT (p > 0.05). The highest bond strength was observed for SB, regardless of the bonding technique (p < 0.05). No significant interaction between adhesives and bonding techniques was noticed (p = 0.597). There was a predominance of adhesive failures for all tested groups. The EBT and WBT displayed similar immediate bond strength means for both adhesives. The SB adhesive exhibited higher means for all conditions tested. Further investigations are needed to evaluate long-term bonding to dentin mediated by commercial etch-and-rinse adhesives using the EBT approach.
Resumo:
Objective: This study evaluated the performance of different adhesive systems in fiber post placement aiming to clarify the influence of different hydrophobic experimental blend adhesives, and of one commercially available adhesive on the frictional retention during a luting procedure. Material and Methods: One luting agent (70 Wt% BisGMA, 28.5% TEGDMA; 1.5% p-tolyldiethanolamine) to cement fiber posts into root canals was applied with 4 different adhesive combinations: Group 1: The etched roots were rinsed with water for 30 s to remove the phosphoric acid, then rinsed with 99.6% ethanol for 30 s, and blot-dried. A trial adhesive (base to catalyst on a 1: 1 ratio) was used with an experimental luting agent (35% Bis-GMA, 14.37% TEGDMA, 0.5% EDMAB, 0.13% CQ); Group 2: A trial adhesive (base to catalyst on a 1: 2 ratio) was luted as in Group 1; Group 3: One-Step Plus (OSP, Bisco Inc.) following the ethanol bonding technique in combination with the luting agent as in Group 1; Group 4: OSP strictly following the manufacturer's instructions using the luting agent as in Group 1. The groups were challenged with push-out tests. Posted root slices were loaded until post segment extrusion in the apical-coronal direction. Failure modes were analyzed under scanning electron microscopy. Results: Push-out strength was not significantly influenced by the luting agent (p>0.05). No statistically significant differences among the tested groups were found as Group 1 (Exp 1 - ethanol-wet bonding technique)=Group 2 (Exp 2 - ethanol-wet bonding technique)= Group 3 (OSP - ethanol-wet bonding technique)= Group 4 (control, OSP - water-wet bonding technique) (p>0.05). The dominating failure modes in all the groups were cohesive/adhesive failures, which were predominantly observed on the post/luting agent interface. Conclusions: The results of this study support the hypothesis that the proposal to replace water with ethanol to bond fiber posts to the root canal using highly hydrophobic resin is plausible, but this seems to be more the proof of a concept than a clinically applicable procedure.
Resumo:
Purpose: To assess the influence of ozone gas and ozonated water application to prepared cavity and bonded interfaces on the resin/dentin bond strength of two-step etch-and-rinse adhesive systems (Adper Single Bond 2 [SB2] and XP-Bond [XP]). Materials and Methods: Sixty extracted human third molars were sectioned perpendicularly to their long axes to expose flat occlusal dentin surfaces. In experiment 1, dentin was treated with ozone before the bonding procedure, while in experiment 2, ozone was applied to resin/dentin bonded interfaces. In experiment 1, dentin surfaces were treated either with ozone gas (2100 ppm), ozonated water (3.5 ppm), or distilled water for 120 s, and then bonded with SB2 or XP according to manufacturers' instructions. Hybrid composite buildups were incrementally constructed and the teeth were sectioned into resin-dentin sticks (0.8 mm(2)). In experiment 2, dentin surfaces were first bonded with SB2 or XP, composite buildups were constructed, and bonded sticks obtained. The sticks were treated with ozone as previously described. Bonded sticks were tested under tensile stress at 1 mm/min. Silver nitrate impregnation along the resin/dentin interfaces was also evaluated under SEM. Results: Two-way ANOVA (adhesive and ozone treatment) detected no significant effect for the cross-product interaction and the main factors in the two experiments (p > 0.05), which was confirmed by the photomicrographs. Conclusion: Ozone gas and ozonated water used before the bonding procedure or on resin/dentin bonded interfaces have no deleterious effects on the bond strengths and interfaces.
Resumo:
Background: The aim of this study was to compare the shear bond strength between Ni-Cr alloy specimens bonded to air-abraded Ni-Cr, bur-abraded Ni-Cr, etched ceramic and etched enamel substrates using the resin cements RelyX ARC or Enforce. Materials and methods: Ni-Cr specimens were made and sandblasted with Al2O3 airborne-particles. Disc-shaped patterns were made for each of the four experimental substrates: Ni-Cr treated with Al2O3 airborne-particles, Ni-Cr treated with diamond bur abrasion, etched enamel and etched ceramic. Results: Significant differences in shear bond strength were found between the different materials and luting agents evaluated. The Ni-Cr alloy cylinders bonded to Ni-Cr surfaces sandblasted with 50 lm Al2O3 particles and bonded with Enforce achieved the highest bond strength when compared with other substrates (28.9 MPa, p < 0.05). Bur-abraded metal discs had lowest values, regardless the cement used (2.9 and 6.9 MPa for RelyX and Enforce, respectively). Etched enamel and etched ceramic had similar shear bond strengths within cement groups and performed better when RelyX was used. Conclusions: Bonding Ni-Cr to Ni-Cr and ceramic may result in similar and higher bond strength when compared to Ni-Cr/enamel bonding. For metal/metal bonding, higher shear bond strength was achieved with resin cement Enforce, and for metal/ceramic and metal/enamel bonding, RelyX had higher results.
Resumo:
Objectives: This study aimed to compare the micro-tensile bond strength of methacrylate resin systems to a silorane-based restorative system on dentin after 24 hours and six months water storage. Material and Methods: The restorative systems Adper Single Bond 2/Filtek Z350 (ASB), Clearfil SE Bond/Z350 (CF), Adper SE Plus/Z350 (ASEP) and P90 Adhesive System/Filtek P90 (P90) were applied on flat dentin surfaces of 20 third molars (n=5). The restored teeth were sectioned perpendicularly to the bonding interface to obtain sticks (0.8 mm2) to be tested after 24 hours (24 h) and 6 months (6 m) of water storage, in a universal testing machine at 0.5 mm/min. The data was analyzed via two-way Analysis of Variance/Bonferroni post hoc tests at 5% global significance. Results: Overall outcomes did not indicate a statistical difference for the resin systems (p=0.26) nor time (p=0.62). No interaction between material × time was detected (p=0.28). Mean standard-deviation in MPa at 24 h and 6 m were: ASB 31.38 (4.53) and 30.06 (1.95), CF 34.26 (3.47) and 32.75 (4.18), ASEP 29.54 (4.14) and 33.47 (2.47), P90 30.27 (2.03) and 31.34 (2.19). Conclusions: The silorane-based system showed a similar performance to methacrylate-based materials on dentin. All systems were stable in terms of bond strength up to 6 month of water storage.
Resumo:
AIM: To evaluate the bond strength of brackets fixed with different materials (two light-cured nanofilled resins - Transbond Supreme LV and Flow Tain LV, a light-cured resin - Transbond XT (control) and two chemically cured resins for indirect bonding - Sondhi Rapid- Set and Custom I.Q.) using the indirect bonding technique after 10 min and 24 h, and evaluate the type of failure. METHODS: One hundred premolars were selected and randomly divided into groups (n=10) according to the material and fixation period. The brackets were bonded through the indirect technique following the manufacturer's instructions and stored in deionized water at 37°C for 10 min or 24 h. After, the specimens were submitted to a shear bond strength (SBS) test (Instron) at 0.5 mm/min and evaluated for adhesive remnant index (ARI). The data were submitted to ANOVA and Tukey's test (p<0.05) and the ARI scores were submitted to the chi-square test. RESULTS: It could be observed a significant difference among the materials (Flow Tain LV = Transbond Supreme LV = Transbond XT> Sondhi Rapid-Set > Custom I.Q.). There was no significant difference in resistance values between 10 min and 24 h, regardless of the materials. Most groups showed adhesive remaining adhered to the enamel (scores 2 and 3) without statistically significant difference (p>0.05). CONCLUSIONS: It was concluded that the light-cured nanofilled materials used in indirect bonding showed greater resistance than the chemically cured materials. The period of fixation had no influence on the resistance for different materials.