31 resultados para reperfusion injury
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Ischemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment. After identifying the profiles of differentially expressed genes observed for each comparison, we carried out functional enrichment analysis to reveal transcripts putatively involved in potential relevant biological processes and signaling pathways. The most relevant processes found in these comparisons were stress, apoptosis, cell differentiation, angiogenesis, focal adhesion, ECM-receptor interaction, ion transport, angiogenesis, mitosis and cell cycle, inflammatory response, olfactory transduction and regulation of actin cytoskeleton. In addition, the most important overrepresented pathways were MAPK, ErbB, JAK/STAT, Toll and Nod like receptors, Angiotensin II, Arachidonic acid metabolism, Wnt and coagulation cascade. Also, new insights were gained about the underlying protection mechanisms against renal IRI promoted by IPC and Hemin treatment. Venn diagram analysis allowed us to uncover common and exclusively differentially expressed genes between these two protective maneuvers, underscoring potential common and exclusive biological functions regulated in each case. In summary, IPC exclusively regulated the expression of genes belonging to stress, protein modification and apoptosis, highlighting the role of IPC in controlling exacerbated stress response. Treatment with the Hmox1 inducer Hemin, in turn, exclusively regulated the expression of genes associated with cell differentiation, metabolic pathways, cell cycle, mitosis, development, regulation of actin cytoskeleton and arachidonic acid metabolism, suggesting a pleiotropic effect for Hemin. These findings improve the biological understanding of how the kidney behaves after IRI. They also illustrate some possible underlying molecular mechanisms involved in kidney protection observed with IPC or Hemin treatment maneuvers.
Resumo:
Recent investigation of the intestine following ischemia and reperfusion (I/R) has revealed that nitric oxide synthase (NOS) neurons are more strongly affected than other neuron types. This implies that NO originating from NOS neurons contributes to neuronal damage. However, there is also evidence of the neuroprotective effects of NO. In this study, we compared the effects of I/R on the intestines of neuronal NOS knockout (nNOS(-/-)) mice and wild-type mice. I/R caused histological damage to the mucosa and muscle and infiltration of neutrophils into the external muscle layers. Damage to the mucosa and muscle was more severe and greater infiltration by neutrophils occurred in the first 24 h in nNOS(-/-) mice. Immunohistochemistry for the contractile protein, alpha-smooth muscle actin, was used to evaluate muscle damage. Smooth muscle actin occurred in the majority of smooth muscle cells in the external musculature of normal mice but was absent from most cells and was reduced in the cytoplasm of other cells following I/R. The loss was greater in nNOS(-/-) mice. Basal contractile activity of the longitudinal muscle and contractile responses to nerve stimulation or a muscarinic agonist were reduced in regions subjected to I/R and the effects were greater in nNOS(-/-) mice. Reductions in responsiveness also occurred in regions of operated mice not subjected to I/R. This is attributed to post-operative ileus that is not significantly affected by knockout of nNOS. The results indicate that deleterious effects are greater in regions subjected to I/R in mice lacking nNOS compared with normal mice, implying that NO produced by nNOS has protective effects that outweigh any damaging effect of this free radical produced by enteric neurons.
Resumo:
Background. Dysfunction of the liver after transplantation may be related to the graft size and ischemia/reperfusion (I/R) injury. N-Acetylcysteine (NAC) exerts beneficial effects on livers undergoing ischemia reperfusion. We sought to evaluate NAC modulation on reduced livers associated with I/R injury. Methods. Male C57BL/6 mice of 8 weeks of age were divided into groups: 50% hepatectomy (G-Hep); NAC (G-Hep + NAC [150 mg/kg]) via vena cava 15 minutes before hepatectomy; ischemia (G-Hep + IR); NAC with hepatectomy (G-IR + Hep + Nac); and IR using 30 minutes selective hepatic occlusion and reperfusion for 24 hours. After 24 hours, the remaining liver was removed, for staining with hematoxylin and eosin or labeling by proliferating cell nuclear antigen. Blood was collected for biochemical evaluations. Significance was considered for P <= .05. Results. Aspartate aminotransferase was high in all studied groups reflecting the hepatectomy and intervention. injuries. However, when assessing alanine aminotransferase, which depicts liver function, induction of IR promoted a greater increase than hepatectomy (P = .0003). NAC decreased ALT activity in all groups, even in association with I/R (P < .05), reflecting a modulation of the injury. Necrosis resulting from IR was mitigated by NAC. The experimental model of 50% reduced live promoted regeneration of the hepatic remnant, which was accentuated by NAC, according to the total number of hepatocytes and PCNA values. Conclusion. NAC preserved the remnant liver in mice and stimulates regeneration even after IR injury.
Resumo:
The Th1/Th2 balance represents an important factor in the pathogenesis of renal ischemia-reperfusion injury (IRI). In addition, IRI causes a systemic inflammation that can affect other tissues, such as the lungs. To investigate the ability of renal IRI to modulate pulmonary function in a specific model of allergic inflammation, C57Bl/6 mice were immunized with ovalbumin/albumen on days 0 and 7 and challenged with an ovalbumin (OA) aerosol on days 14 and 21. After 24 h of the second antigen challenge, the animals were subjected to 45 minutes of ischemia. After 24 h of reperfusion, the bronchoalveolar lavage (BAL) fluid, blood and lung tissue were collected for analysis. Serum creatinine levels increased in both allergic and non-immunized animals subjected to IRI. However, BAL analysis showed a reduction in the total cells (46%) and neutrophils (58%) compared with control allergic animals not submitted to IRI. In addition, OA challenge induced the phosphorylation of ERK and Akt and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung homogenates. After renal IRI, the phosphorylation of ERK and expression of COX-2 and iNOS were markedly reduced; however, there was no difference in the phosphorylation of Akt between sham and ischemic OA-challenged animals. Mucus production was also reduced in allergic mice after renal IRI. IL-4, IL-5 and IL-13 were markedly down-regulated in immunized/challenged mice subjected to IRI. These results suggest that renal IRI can modulate lung allergic inflammation, probably by altering the Th1/Th2 balance and, at least in part, by changing cellular signal transduction factors. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Objectives: We tested the effects of liver reperfusion in the immunohistochemical expression of nitric oxide synthase on the thoracic aorta and the heart. Materials and Methods: We randomized 24 male Wistar rats into 3 groups: (1) control; (2) R2 group, with 60 minutes of partial (70%) liver ischemia and 2 hours of global liver reperfusion; (3) and R6 group, with 60 minutes of partial liver ischemia and 6 hours of global liver reperfusion. Results: In the heart, there was little, diffuse immunohistochemical endothelial staining; immunohistochemical inducible nitric oxide synthase staining was expressed in the adventitia layer of intramyocardial vessels in both cases, with a time-dependent but not statistically significant increase. In the thoracic aorta, a time-dependent decrease in endothelial nitric oxide synthase expression in the muscular layer after reperfusion, which was statistically significant in R6 versus the control. Positive immunostaining for inducible nitric oxide synthase was seen in the muscular and endothelial layers, and this varied from moderate in the control group, to light in the endothelium in groups R2 and R6. Conclusions: We observed changes that may be implicated in heart injury and impairment of aortal tone after liver ischemia and reperfusion injury.
Resumo:
Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.
Resumo:
Increased reactive oxygen species (ROS) promote matrix metalloproteinase (MMP) activities and may underlie cardiomyocyte injury and the degradation of cardiac troponin I (cTI) during acute pulmonary thromboembolism (APT). We examined whether pretreatment or therapy with tempol (a ROS scavenger) prevents MMP activation and cardiomyocyte injury of APT. Anesthetized sheep received tempol infusion (1.0 mg kg(-1) min(-1), i.v.) or saline starting 30 min before or 30 min after APT (autologous blood clots). Control animals received saline. Hemodynamic measurements were performed. MMPs were studied in the right ventricle (RV) by gelatin zymography, fluorimetric activity assay, and in situ zymography. The ROS levels were determined in the RV and cTI were measured in serum samples. APT increased the pulmonary arterial pressure and pulmonary vascular resistance by 146 and 164 %, respectively. Pretreatment or therapy with tempol attenuated these increases. While APT increased RV + dP/dt (max), tempol infusions had no effects. APT increased RV MMP-9 (but not MMP-2) levels. In line with these findings, APT increased RV MMP activities, and this finding was confirmed by in situ zymography. APT increased the RV ROS levels and tempol infusion, before or after APT, and blunted APT-induced increases in MMP-9 levels, MMP activities, in situ MMP activities, and ROS levels in the RV. cTI concentrations increased after APT, and tempol attenuated these increases. RV oxidative stress after APT increases the RV MMP activities, leading to the degradation of sarcomeric proteins, including cTI. Antioxidant treatment may prevent MMP activation and protect against cardiomyocyte injury after APT.
Resumo:
PURPOSE: To investigate the effect of lovastatin on renal ischemia followed by reperfusion. METHODS: Thirty one Wistar rats submitted to left renal ischemia for 60 minutes followed by contralateral nephrectomy were divided into two groups: A (n = 17, control, no treatment), and B (n = 14, lovastatin 15 mg/kg/day p.o. ten days before ischemia). The animals were sacrificed at the end of ischemia, after 24 hours and at seven days after reperfusion. Survival, serum urea and creatinine levels and renal mitochondrial function were evaluated. RESULTS: Mortality was 29.4% in group A and 0.7% in group B. Urea and creatinine levels were increased in both groups, but the values were significantly lower in group B. Mitochondrial function showed decoupling in 83.4% of group A, as opposed to 38.4/% of group B. CONCLUSIONS: The result shows a protective action of renal function by lovastatin administered before ischemia/reperfusion. Since most of the mitochondrial fraction presented membranes with the ability to maintain ATP production in group B, stabilization of the mitochondrial membrane should be considered as part of the protective action of lovastatin on renal function in ischemia/reperfusion.
Resumo:
Ischemia/reperfusion (I/R) injury remains a major cause of graft dysfunction, which impacts short- and long-term follow-up. Hyperbaric oxygen therapy (HBO), through plasma oxygen transport, has been currently used as an alternative treatment for ischemic tissues. The aim of this study was to analyze the effects of HBO on kidney I/R injury model in rats, in reducing the harmful effect of I/R. The renal I/R model was obtained by occluding bilateral renal pedicles with nontraumatic vascular clamps for 45 minutes, followed by 48 hours of reperfusion. HBO therapy was delivered an hypebaric chamber (2.5 atmospheres absolute). Animals underwent two sessions of 60 minutes each at 6 hours and 20 hours after initiation of reperfusion. Male Wistar rats (n = 38) were randomized into four groups: sham, sham operated rats; Sham+HBO, sham operated rats exposed to HBO; I/R, animals submitted to I/R; and I/R+HBO, I/R rats exposed to HBO. Blood, urine, and kidney tissue were collected for biochemical, histologic, and immunohistochemical analyses. The histopathological evaluation of the ischemic injury used a grading scale of 0 to 4. HBO attenuated renal dysfunction after ischemia characterized by a significant decrease in blood urea nitrogen (BUN), serum creatinine, and proteinuria in the I/R+HBO group compared with I/R alone. In parallel, tubular function was improved resulting in significantly lower fractional excretions of sodium and potassium. Kidney sections from the I/R plus HBO group showed significantly lower acute kidney injury scores compared with the I/R group. HBO treatment significantly diminished proliferative activity in I/R (P < .05). There was no significant difference in macrophage infiltration or hemoxygenase-1 expression. In conclusion, HBO attenuated renal dysfunction in a kidney I/R injury model with a decrease in BUN, serum creatinine, proteinuria, and fractional excretion of sodium and potassium, associated with reduced histological damage.
Resumo:
OBJECTIVES: The clinical significance of ischemia/reperfusion of the lower extremities demands further investigation to enable the development of more effective therapeutic alternatives. This study investigated the changes in the vascular reactivity of the rabbit femoral artery and nitric oxide metabolites under partial ischemia/reperfusion conditions following cilostazol administration. METHODS: Ischemia was induced using infrarenal aortic clamping. The animals were randomly divided into seven groups: Control 90 minutes, Ischemia/Reperfusion 90/60 minutes, Control 120 minutes, Ischemia/Reperfusion 120/90 minutes, Cilostazol, Cilostazol before Ischemia/Reperfusion 120/90 minutes, and Ischemia 120 minutes/Cilostazol/Reperfusion 90 minutes. Dose-response curves for sodium nitroprusside, acetylcholine, and the calcium ionophore A23187 were obtained in isolated femoral arteries. The levels of nitrites and nitrates in the plasma and skeletal muscle were determined using chemiluminescence. RESULTS: Acetylcholine- and A23187-induced relaxation was reduced in the Ischemia/Reperfusion 120/90 group, and treatment with cilostazol partially prevented this ischemia/reperfusion-induced endothelium impairment. Only cilostazol treatment increased plasma levels of nitrites and nitrates. An elevation in the levels of nitrites and nitrates was observed in muscle tissues in the Ischemia/Reperfusion 120/90, Cilostazol/Ischemia/Reperfusion, and Ischemia/Cilostazol/Reperfusion groups. CONCLUSION: Hind limb ischemia/reperfusion yielded an impaired endothelium-dependent relaxation of the femoral artery. Furthermore, cilostazol administration prior to ischemia exerted a protective effect on endothelium-dependent vascular reactivity under ischemia/reperfusion conditions.
Resumo:
Insulin and the inhibition of the reninangiotensin system have independent benefits for ischemiareperfusion injury, but their combination has not been tested. Our aim was to evaluate the effects of insulin+captopril on insulin/angiotensin signaling pathways and cardiac function in the isolated heart subjected to ischemiareperfusion. Isolated hearts were perfused (Langendorff technique) with KrebsHenseleit (KH) buffer for 25 min. Global ischemia was induced (20 min), followed by reperfusion (30 min) with KH (group KH), KH+angiotensin-I (group A), KH+angiotensin-I+captopril (group AC), KH+insulin (group I), KH+insulin+angiotensin-I (group IA), or KH+insulin+angiotensin-I+captopril (group IAC). Group A had a 24% reduction in developed pressure and an increase in end-diastolic pressure vs. baseline, effects that were reverted in groups AC, IA, and IAC. The phosphorylation of protein kinase B (AKT) was higher in groups I and IA vs. groups KH and A. The phosphorylation of AMP-activated protein kinase (AMPK) was similar to 31% higher in groups I, IA, and IAC vs. groups KH, A, and AC. The tert-butyl hydroperoxide (tBOOH)-induced chemiluminescence was lower (similar to 2.2 times) in all groups vs. group KH and was similar to 35% lower in group IA vs. group A. Superoxide dismutase content was lower in groups A, AC, and IAC vs. group KH. Catalase activity was similar to 28% lower in all groups (except group IA) vs. group KH. During reperfusion of the ischemic heart, insulin activates the AKT and AMPK pathways and inhibits the deleterious effects of angiotensin-I perfusion on SOD expression and cardiac function. The addition of captopril does not potentiate these effects.
Resumo:
Background: Epsilon-protein kinase C (epsilon PKC) protects the heart from ischemic injury. However, the mechanism(s) of epsilon PKC cardioprotection is still unclear. Identification of the epsilon PKC targets may aid in elucidating the epsilon PKC-mediated cardioprotective mechanisms. Previous studies, using epsilon PKC transgenic mice and difference in gel electrophoresis, identified proteins involved in glucose metabolism, the expression of which was modified by epsilon PKC. Those studies were accompanied by metabolomic analysis, suggesting that increased glucose oxidation may be responsible for the cardioprotective effect of epsilon PKC. Whether these epsilon PKC-mediated alterations were because of differences in protein expression or phosphorylation was not determined. Methods and Results: In the present study, we used an epsilon PKC -specific activator peptide, psi epsilon RACK, combined with phosphoproteomics, to find epsilon PKC targets, and identified that the proteins whose phosphorylation was altered by selective activation of epsilon PKC were mostly mitochondrial proteins. Analysis of the mitochondrial phosphoproteome led to the identification of 55 spots, corresponding to 37 individual proteins, exclusively phosphorylated, in the presence of psi epsilon RACK. The majority of the proteins identified were involved in glucose and lipid metabolism, components of the respiratory chain as well as mitochondrial heat shock proteins. Conclusions: The protective effect of epsilon PKC during ischemia involves phosphorylation of several mitochondrial proteins involved in glucose and lipid metabolism and oxidative phosphorylation. Regulation of these metabolic pathways by epsilon PKC phosphorylation may lead to epsilon PKC-mediated cardioprotection induced by psi epsilon RACK. (Circ J 2012; 76: 1476-1485)
Resumo:
Numerous steatotic livers are discarded for transplantation because of their poor tolerance to ischemia-reperfusion (I/R). We examined whether tauroursodeoxycholic acid (TUDCA), a known inhibitor of endoplasmic reticulum (ER) stress, protects steatotic and nonsteatotic liver grafts preserved during 6 h in University of Wisconsin (UW) solution and transplanted. The protective mechanisms of TUDCA were also examined. Neither unfolded protein response (UPR) induction nor ER stress was evidenced in steatotic and nonsteatotic liver grafts after 6 h in UW preservation solution. TUDCA only protected steatotic livers grafts and did so through a mechanism independent of ER stress. It reduced proliferator-activated receptor-gamma(PPAR gamma) and damage. When PPAR gamma was activated, TUDCA did not reduce damage. TUDCA, which inhibited PPAR gamma, and the PPAR gamma antagonist treatment up-regulated toll-like receptor 4 (TLR4), specifically the TIR domain-containing adaptor inducing IFN beta (TRIF) pathway. TLR4 agonist treatment reduced damage in steatotic liver grafts. When TLR4 action was inhibited, PPAR gamma antagonists did not protect steatotic liver grafts. In conclusion, TUDCA reduced PPAR gamma and this in turn up-regulated the TLR4 pathway, thus protecting steatotic liver grafts. TLR4 activating-based strategies could reduce the inherent risk of steatotic liver failure after transplantation.
Resumo:
OBJETIVO: Comparar os achados histopatológicos e de apoptose em pulmões de ratos preservados em soluções low-potassium dextran (LPD, baixo potássio dextrana), histidine-tryptophan-ketoglutarate (HTK, histidina-triptofano-cetoglutarato) ou salina normal (SN) em 6 h e 12 h de isquemia pela utilização de um modelo experimental de perfusão pulmonar ex vivo. MÉTODOS: Sessenta ratos Wistar foram anestesiados, randomizados e submetidos à perfusão anterógrada pela artéria pulmonar com uma das soluções preservadoras. Após a extração, os blocos cardiopulmonares foram preservados por 6 ou 12 h a 4ºC, sendo então reperfundidos com sangue homólogo em um sistema de perfusão ex vivo durante 60 min. Ao final da reperfusão, fragmentos do lobo médio foram extraídos e processados para histopatologia, sendo avaliados os seguintes parâmetros: congestão, edema alveolar, hemorragia alveolar, hemorragia, infiltrado inflamatório e infiltrado intersticial. O grau de apoptose foi avaliado pelo método TdT-mediated dUTP nick end labeling. RESULTADOS: A histopatologia demonstrou que todos os pulmões preservados com SN apresentaram edema alveolar após 12 h de isquemia. Não houve diferenças em relação ao grau de apoptose nos grupos estudados. CONCLUSÕES: No presente estudo, os achados histopatológicos e de apoptose foram semelhantes com o uso das soluções LPD e HTK, enquanto a presença de edema foi significativamente maior com o uso de SN.
Resumo:
Background: There is a growing need to improve myocardial protection, which will lead to better performance of cardiac operations and reduce morbidity and mortality. Therefore, the objective of this study was to compare the efficacy of myocardial protection solution using both intracellular and extracellular crystalloid type regarding the performance of the electrical conduction system, left ventricular contractility and edema, after being subjected to ischemic arrest and reperfusion. Methods: Hearts isolated from male Wistar (n=32) rats were prepared using Langendorff method and randomly divided equally into four groups according the cardioprotective solutions used Krebs-Henseleit-Buffer (KHB), Bretschneider-HTK (HTK), St. Thomas-1 (STH-1) and Celsior (CEL). After stabilization with KHB at 37 degrees C, baseline values (control) were collected for heart rate (HR), left ventricle systolic pressure (LVSP), maximum first derivate of rise left ventricular pressure (+dP/dt), maximum first derivate of fall left ventricular pressure (-dP/dt) and coronary flow (CF). The hearts were then perfused at 10 degrees C for 5 min and kept for 2 h in static ischemia at 20 degrees C in each cardioprotective solution. Data evaluation was done using analysis of variance in completely randomized One-Way ANOVA and Tukey's test for multiple comparisons. The level of statistical significance chosen was P<0.05. Results: HR was restored with all the solutions used. The evaluation of left ventricular contractility (LVSP, +dP/dt and -dP/dt) showed that treatment with CEL solution was better compared to other solutions. When analyzing the CF, the HTK solution showed better protection against edema. Conclusion: Despite the cardioprotective crystalloid solutions studied are not fully able to suppress the deleterious effects of ischemia and reperfusion in the rat heart, the CEL solution had significantly higher results followed by HTK>KHB>STH-1.