24 resultados para renal mesangial cells

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tamoxifen, a selective estrogen receptor modulator, has antifibrotic properties; however, whether it can attenuate renal fibrosis is unknown. In this study, we tested the effects of tamoxifen in a model of hypertensive nephrosclerosis (chronic inhibition of nitric oxide synthesis with L-NAME). After 30 days, treated rats had significantly lower levels of albuminuria as well as lower histologic scores for glomerulosclerosis and interstitial fibrosis than untreated controls. Tamoxifen was renoprotective despite having no effect on the sustained, severe hypertension induced by L-NAME. Tamoxifen prevented the accumulation of extracellular matrix by decreasing the expression of collagen I, collagen III, and fibronectin mRNA and protein. These renoprotective effects associated with inhibition of TGF-beta 1 and plasminogen activator inhibitor-1, and with a significant reduction in a-smooth muscle actin-positive cells in the renal interstitium. Furthermore, tamoxifen abrogated IL-1 beta- and angiotensin-II-induced proliferation of fibroblasts from both kidney explants and from the NRK-49F cell line. Tamoxifen also inhibited the expression of extracellular matrix components and the production and release of TGF-beta 1 into the supernatant of these cells. In summary, tamoxifen exhibits antifibrotic effects in the L-NAME model of hypertensive nephrosclerosis, likely through the inhibition of TGF-beta 1, suggesting that it may have therapeutic use in CKD treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: the purpose of this study was to investigate the effect of low-level laser therapy (LLLT) on chronic kidney disease (CKD) in a model of unilateral ureteral obstruction (UUO). Background data: Regardless of the etiology, CKD involves progressive widespread tissue fibrosis, tubular atrophy, and loss of kidney function. This process also occurs in kidney allograft. At present, effective therapies for this condition are lacking. We investigated the effects of LLLT on the interstitial fibrosis that occurs after experimental UUO in rats. Methods: The occluded kidney of half of the 32 Wistar rats that underwent UUO received a single intraoperative dose of LLLT (AlGaAs laser, 780 nm, 22.5 J/cm(2), 30mW, 0.75W/cm(2), 30 sec on each of nine points). After 14 days, renal fibrosis was assessed by Sirius red staining under polarized light. Immunohistochemical analyses quantitated the renal tissue cells that expressed fibroblast (FSP-1) and myofibroblast (alpha-SMA) markers. Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to determine the mRNA expression of interleukin (IL)-6, monocyte chemotactic protein-1 (MCP-1), transforming growth factor (TGF)-beta 1 and Smad3. Results: The UUO and LLLT animals had less fibrosis than the UUO animals, as well having decreased expression inflammatory and pro-fibrotic markers. Conclusions: For the first time, we showed that LLLT had a protective effect regarding renal interstitial fibrosis. It is conceivable that by attenuating inflammation, LLLT can prevent tubular activation and transdifferentiation, which are the two processes that mainly drive the renal fibrosis of the UUO model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Physic nut (Jatropha curcas) is a plant cultivated for biofuel production. Pericarp is a potential livestock food source by-product. However, its use may be limited due to the presence of toxic compounds, mainly phorbol esters. Thus, this study aimed to evaluate pericarp toxicity. Twenty sheep were divided in four groups, one control group which did not receive the plant and three experimental groups which received pericarp in 15% (G15), 30% (G30) and 45% (G45) concentrations for 23 days. After 10 days of treatment, pericarp ingestion produced food intake decrease, diarrhea, dehydration and loss of body condition. All treated groups showed decrease in alkaline phosphatase activity. G30 animals presented reductions in urea and total protein concentrations, and increase in potassium and sodium levels. G45 animals showed increase in serum aspartate aminotransferase activity and in albumin, creatinin, total and indirect bilirubin levels. Anatomohistopathologic findings included ascites, hydropericardium, congestion of the gastintestinal tract and lungs, pulmonary edema and adhesions in the thoracic cavity, renal tubular cells and centrilobular cytoplasmic vacuolation and lymphohistiocytic pneumonia and lymphoplasmacytic and histiocytic enteritis. On the physiochemical analysis 0.3845mg of phorbol esters/g of pericarp were detected. It is concluded that J. curcas pericarp is toxic and is not recommended for sheep feeding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and Objective The use of metformin throughout gestation by women with polycystic ovary syndrome (PCOS) and type 2 diabetes mellitus (T2DM) significantly reduces the number of first-trimester spontaneous abortions and the rate of occurrence of gestational diabetes and hypertensive syndromes. Metformin is taken up into renal tubular cells by organic cation transport 2 (OCT2) and eliminated unchanged into the urine. The objective of this study was to analyse the influence of T2DM on the pharmacokinetics of metformin in obese pregnant women and in a control group of non-diabetic obese pregnant women with PCOS. Methods Eight non-diabetic obese pregnant women with PCOS and nine obese pregnant women with T2DM taking oral metformin 850 mg every 12 h were evaluated throughout gestation. Serial blood samples were collected over a 12-h period during the third trimester of pregnancy. Steady-state plasma concentrations of metformin were determined by high-performance liquid chromatography with a UV detector. The pharmacokinetic results of the two groups, reported as median and 25th and 75th percentile, were compared statistically using the Mann Whitney test, with the level of significance set at p < 0.05. Results The pharmacokinetic parameters detected for PCOS versus T2DM patients, reported as median, were, respectively: elimination half-life 3.75 versus 4.00 h; time to maximum concentration 2.00 versus 3.00 h; maximum concentration 1.42 versus 1.21 mu g/mL; mean concentration 0.53 versus 0.56 mu g/mL; area under the plasma concentration time curve from time zero to 12 h 6.42 versus 6.73 mu g.h/mL; apparent total oral clearance 105.39 versus 98.38 L/h; apparent volume of distribution after oral administration 550.51 versus 490.98 L; and fluctuation (maximum minimum concentration variation) of 179.56 versus 181.73%. No significant differences in pharmacokinetic parameters were observed between the groups. Conclusion T2DM in the presence of insulin use does not influence the pharmacokinetics of metformin in pregnant patients, demonstrating the absence of a need to increase the dose, and consequently does not influence the OCT2-mediated transport in pregnant women with PCOS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIMS: Solute carrier 2a2 (Slc2a2) gene codifies the glucose transporter GLUT2, a key protein for glucose flux in hepatocytes and renal epithelial cells of proximal tubule. In diabetes mellitus, hepatic and tubular glucose output has been related to Slc2a2/GLUT2 overexpression; and controlling the expression of this gene may be an important adjuvant way to improve glycemic homeostasis. Thus, the present study investigated transcriptional mechanisms involved in the diabetes-induced overexpression of the Slc2a2 gene. MAIN METHODS: Hepatocyte nuclear factors 1α and 4α (HNF-1α and HNF-4α), forkhead box A2 (FOXA2), sterol regulatory element binding protein-1c (SREBP-1c) and the CCAAT-enhancer-binding protein (C/EBPβ) mRNA expression (RT-PCR) and binding activity into the Slc2a2 promoter (electrophoretic mobility assay) were analyzed in the liver and kidney of diabetic and 6-day insulin-treated diabetic rats. KEY FINDINGS: Slc2a2/GLUT2 expression increased by more than 50% (P<0.001) in the liver and kidney of diabetic rats, and 6-day insulin treatment restores these values to those observed in non-diabetic animals. Similarly, the mRNA expression and the binding activity of HNF-1α, HNF-4α and FOXA2 increased by 50 to 100% (P<0.05 to P<0.001), also returning to values of non-diabetic rats after insulin treatment. Neither the Srebf1 and Cebpb mRNA expression, nor the SREBP-1c and C/EBP-β binding activity was altered in diabetic rats. SIGNIFICANCE: HNF-1α, HNF-4α and FOXA2 transcriptional factors are involved in diabetes-induced overexpression of Slc2a2 gene in the liver and kidney. These data point out that these transcriptional factors are important targets to control GLUT2 expression in these tissues, which can contribute to glycemic homeostasis in diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cisplatin is a highly effective chemotherapeutic drug; however, its use is limited by nephrotoxicity. Studies showed that the renal injury produced by cisplatin involves oxidative stress and cell death mediated by apoptosis and necrosis in proximal tubular cells. The use of antioxidants to decrease cisplatin-induced renal cell death was suggested as a potential therapeutic measure. In this study the possible protective effects of carvedilol, a beta blocker with antioxidant activity, was examined against cisplatin-induced apoptosis in HK-2 human kidney proximal tubular cells. The mitochondrial events involved in this protection were also investigated. Four groups were used: controls (C), cisplatin alone at 25 mu M (CIS), cisplatin 25 mu M plus carvedilol 50 mu M (CV + CIS), and carvedilol alone 50 mu M (CV). Cell viability, apoptosis, caspase-9, and caspase-3 were determined. Data demonstrated that carvedilol effectively increased cell viability and minimized caspase activation and apoptosis in HK-2 cells, indicating this may be a promising drug to reduce nephrotoxicity induced by cisplatin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C) is a renin-angiotensin-system (RAS)-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP) and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC) (2×10(5) cells/animal) were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1β, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i) prevented the progressive increase of AP, (ii) improved renal morphology and microvascular rarefaction, (iii) reduced fibrosis, proteinuria and inflammatory cytokines, (iv) suppressed the intrarenal RAS, iv) decreased sympathetic hyperactivity in anesthetized animals and v) MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca2+-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)alpha protein structurally linked to AT(2)R as revealed by their co-immunoprecipitation mimicked the effect of Ang-(3-4) on Ca2+-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi((5-24)) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca2+-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace H-3-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca2+-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the greatest challenges in urological oncology is renal cell carcinoma (RCC), which is the third leading cause of death in genitourinary cancers. RCCs are highly vascularized and respond positively to antiangiogenic therapy. Endostatin (ES) is a fragment of collagen XVIII that possesses antiangiogenic activity. In this study, we examined the potential of ES-based antiangiogenic therapy to activate tumor-associated endothelial cells in metastatic RCC (mRCC). Balb/c-bearing Renca cells were treated with NIH/3T3-LendSN or, as a control, with NIH/3T3-LXSN cells. The T-cell subsets and lymphocyte populations of tumors, mediastinal lymph nodes and the spleen were assessed by flow cytometry. The expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was assessed by real-time PCR, flow cytometry and immunohistochemistry analysis. ES gene therapy led to an increase in the percentage of infiltrating CD4-interferon (IFN)-gamma cells (P<0.05), CD8-IFN-gamma cells (P<0.01) and CD49b-tumor necrosis factor-alpha cells (P<0.01). In addition, ES therapy caused an increase at the mRNA level of ICAM-1 (1.4-fold; P<0.01) and VCAM-1 (1.5-fold) (control vs treated group; P<0.001). Through flow cytometry, we found a significant increase in the CD34/ICAM-1 cells (8.1-fold; P<0.001) and CD34/VCAM-1 cells (1.6-fold; P<0.05). ES gene therapy induced a significant increase in both T CD4 and CD8 cells in the lymph nodes and the spleen, suggesting that ES therapy may facilitate cell survival or clonal expansion. CD49b cells were also present in increased quantities in all of these organs. In this study, we demonstrate an antitumor inflammatory effect of ES in an mRCC model, and this effect is mediated by an increase in ICAM-1 and VCAM-1 expression in tumor-associated endothelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ischemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment. After identifying the profiles of differentially expressed genes observed for each comparison, we carried out functional enrichment analysis to reveal transcripts putatively involved in potential relevant biological processes and signaling pathways. The most relevant processes found in these comparisons were stress, apoptosis, cell differentiation, angiogenesis, focal adhesion, ECM-receptor interaction, ion transport, angiogenesis, mitosis and cell cycle, inflammatory response, olfactory transduction and regulation of actin cytoskeleton. In addition, the most important overrepresented pathways were MAPK, ErbB, JAK/STAT, Toll and Nod like receptors, Angiotensin II, Arachidonic acid metabolism, Wnt and coagulation cascade. Also, new insights were gained about the underlying protection mechanisms against renal IRI promoted by IPC and Hemin treatment. Venn diagram analysis allowed us to uncover common and exclusively differentially expressed genes between these two protective maneuvers, underscoring potential common and exclusive biological functions regulated in each case. In summary, IPC exclusively regulated the expression of genes belonging to stress, protein modification and apoptosis, highlighting the role of IPC in controlling exacerbated stress response. Treatment with the Hmox1 inducer Hemin, in turn, exclusively regulated the expression of genes associated with cell differentiation, metabolic pathways, cell cycle, mitosis, development, regulation of actin cytoskeleton and arachidonic acid metabolism, suggesting a pleiotropic effect for Hemin. These findings improve the biological understanding of how the kidney behaves after IRI. They also illustrate some possible underlying molecular mechanisms involved in kidney protection observed with IPC or Hemin treatment maneuvers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present work was to study the renal function of healthy and tumor-bearing rats chronically supplemented with fish oil (FO), a source of n-3 polyunsaturated fatty acids. Weanling male rats were divided in two groups, one control (C) and another orally supplemented for 70 days with FO (1 g/kg body weight). After this time, half the animals of each group were injected in the right flank with a suspension of Walker 256 tumor cells (W and WFO). The W group had less proteinemia reflecting cachectic proteolysis, FO reversed this fact. Tumor weight gain was also reduced in WFO. Glomerular filtration rate (GFR) was not different in FO or W compared to C, but was higher in WFO. Renal plasma flow (RPF) was higher in the FO supplemented groups. The W group had lower plasma osmolality than the C group, but FO supplementation resulted in normalization of this parameter. Fractional sodium excretion (FENa+) of FO rats was similar to C. Proximal Na+ reabsorption, evaluated by lithium clearance, was similar among the groups. Urinary thromboxane B-2 (TXB2) excretion was lower in the supplemented groups. The number of macrophages in renal tissue was higher in W compared to C rats, but was lower in WFO rats compared to W rats. In conclusion, FO supplementation resulted in less tumor growth and cachexia, and appeared to be renoprotective, as suggested by higher RPF and GFR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammation contributes to the pathogenesis of chronic kidney disease (CKD). Molecules released by the inflamed injured tissue can activate toll-like receptors (TLRs), thereby modulating macrophage and CD4+ T-cell activity. We propose that in renal fibrogenesis, M2 macrophages are recruited and activated in a T helper subset 2 cell (TH2)-prone inflammatory milieu in a MyD88- dependent manner. Mice submitted to unilateral ureteral ligation (UUO) demonstrated an increase in macrophage infiltration with collagen deposition after 7 d. Conversely, TLR2, TLR4 and MyD88 knockout (KO) mice had an improved renal function together with diminished TH2 cytokine production and decreased fibrosis formation. Moreover, TLR2, TLR4 and MyD88 KO animals exhibited less M2 macrophage infiltration, namely interleukin (IL)-10+ and CD206+ CD11bhigh cells, at 7 d after surgery. We evaluated the role of a TH2 cytokine in this context, and observed that the absence of IL-4 was associated with better renal function, decreased IL-13 and TGF- β levels, reduced arginase activity and a decrease in fibrosis formation when compared with IL-12 KO and wild-type (WT) animals. Indeed, the better renal outcomes and the decreased fibrosis formation were restricted to the deficiency of IL-4 in the hematopoietic compartment. Finally, macrophage depletion, rather than the absence of T cells, led to reduced lesions of the glomerular filtration barrier and decreased collagen deposition. These results provide evidence that future therapeutic strategies against renal fibrosis should be accompanied by the modulation of the M1:M2 and TH1:TH2 balance, as TH2 and M2 cells are predictive of fibrosis toward mechanisms that are sensed by innate immune response and triggered in a MyD88-dependent pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transplanted individuals in operational tolerance (OT) maintain long-term stable graft function after completely stopping immunosuppression. Understanding the mechanisms involved in OT can provide valuable information about pathways to human transplantation tolerance. Here we report that operationally tolerant individuals display quantitative and functional preservation of the B-c ell compartment in renal transplantation. OT exhibited normal numbers of circulating total B cells, naive, memory and regulatory B cells (Bregs) as well as preserved B-cell receptor repertoire, similar to healthy individuals. In addition, OT also displayed conserved capacity to activate the cluster of differentiation 40 (CD40)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in Bregs, in contrast, with chronic rejection. Rather than expansion or higher activation, we show that the preservation of the B-cell compartment favors OT. Online address: http://www.molmed.org doi: 10.2119/molmed.2011.00281

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inoue BH, dos Santos L, Pessoa TD, Antonio EL, Pacheco BPM, Savignano FA, Carraro-Lacroix LR, Tucci PJF, Malnic G, Girardi ACC. Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure. Am J Physiol Regul Integr Comp Physiol 302: R166-R174, 2012. First published October 26, 2011; doi:10.1152/ajpregu.00127.2011.-Heart failure (HF) is associated with a reduced effective circulating volume that drives sodium and water retention and extracellular volume expansion. We therefore hypothesized that Na(+)/H(+) exchanger isoform 3 (NHE3), the major apical transcellular pathway for sodium reabsorption in the proximal tubule, is upregulated in an experimental model of HF. HF was induced in male rats by left ventricle radiofrequency ablation. Sham-operated rats (sham) were used as controls. At 6 wk after surgery, HF rats exhibited cardiac dysfunction with a dramatic increase in left ventricular end-diastolic pressure. By means of stationary in vivo microperfusion and pH-dependent sodium uptake, we demonstrated that NHE3 transport activity was significantly higher in the proximal tubule of HF compared with sham rats. Increased NHE3 activity was paralleled by increased renal cortical NHE3 expression at both protein and mRNA levels. In addition, the baseline PKA-dependent NHE3 phosphorylation at serine 552 was reduced in renal cortical membranes of rats with HF. Collectively, these results suggest that NHE3 is upregulated in the proximal tubule of HF rats by transcriptional, translational, and posttranslational mechanisms. Enhanced NHE3-mediated sodium reabsorption in the proximal tubule may contribute to extracellular volume expansion and edema, the hallmark feature of HF. Moreover, our study emphasizes the importance of undertaking a cardiorenal approach to contain progression of cardiac disease.