5 resultados para regional integration 2.0
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Increasing public interest in science information in a digital and 2.0 science era promotes a dramatically, rapid and deep change in science itself. The emergence and expansion of new technologies and internet-based tools is leading to new means to improve scientific methodology and communication, assessment, promotion and certification. It allows methods of acquisition, manipulation and storage, generating vast quantities of data that can further facilitate the research process. It also improves access to scientific results through information sharing and discussion. Content previously restricted only to specialists is now available to a wider audience. This context requires new management systems to make scientific knowledge more accessible and useable, including new measures to evaluate the reach of scientific information. The new science and research quality measures are strongly related to the new online technologies and services based in social media. Tools such as blogs, social bookmarks and online reference managers, Twitter and others offer alternative, transparent and more comprehensive information about the active interest, usage and reach of scientific publications. Another of these new filters is the Research Blogging platform, which was created in 2007 and now has over 1,230 active blogs, with over 26,960 entries posted about peer-reviewed research on subjects ranging from Anthropology to Zoology. This study takes a closer look at RB, in order to get insights into its contribution to the rapidly changing landscape of scientific communication.
Resumo:
The objective of this study was to compare the bone repair along a mandibular body osteotomy stabilized with 2.0 mm absorbable and metallic systems. 12 male, adult mongrel dogs were divided into two groups (metallic and absorbable) and subjected to unilateral osteotomy between the mandibular third and fourth premolars, which was stabilized by applying two 4-hole plates. At 2 and 18 weeks, three dogs from each group were killed and the osteotomy sites were removed and divided equally into three parts: the upper part was labelled the tension third (TT), the lower part the compression third (CT), and the part between the TT and CT the intermediary third (IT). Regardless of the treatment system, union between the fragments was observed at 18 weeks and the CT showed more advanced stages of bone repair than the TT. Histometric analysis did not reveal any significant differences among the 3 parts or systems in the distance between bone fragments at 2 weeks. Although at 18 weeks the proportions of newly formed bone did not differ among TT, IT and CT, significantly enhanced bone formation was observed in all sections for the metallic group. The patterns of repair were distinct between treatments.
Resumo:
Background The use of the knowledge produced by sciences to promote human health is the main goal of translational medicine. To make it feasible we need computational methods to handle the large amount of information that arises from bench to bedside and to deal with its heterogeneity. A computational challenge that must be faced is to promote the integration of clinical, socio-demographic and biological data. In this effort, ontologies play an essential role as a powerful artifact for knowledge representation. Chado is a modular ontology-oriented database model that gained popularity due to its robustness and flexibility as a generic platform to store biological data; however it lacks supporting representation of clinical and socio-demographic information. Results We have implemented an extension of Chado – the Clinical Module - to allow the representation of this kind of information. Our approach consists of a framework for data integration through the use of a common reference ontology. The design of this framework has four levels: data level, to store the data; semantic level, to integrate and standardize the data by the use of ontologies; application level, to manage clinical databases, ontologies and data integration process; and web interface level, to allow interaction between the user and the system. The clinical module was built based on the Entity-Attribute-Value (EAV) model. We also proposed a methodology to migrate data from legacy clinical databases to the integrative framework. A Chado instance was initialized using a relational database management system. The Clinical Module was implemented and the framework was loaded using data from a factual clinical research database. Clinical and demographic data as well as biomaterial data were obtained from patients with tumors of head and neck. We implemented the IPTrans tool that is a complete environment for data migration, which comprises: the construction of a model to describe the legacy clinical data, based on an ontology; the Extraction, Transformation and Load (ETL) process to extract the data from the source clinical database and load it in the Clinical Module of Chado; the development of a web tool and a Bridge Layer to adapt the web tool to Chado, as well as other applications. Conclusions Open-source computational solutions currently available for translational science does not have a model to represent biomolecular information and also are not integrated with the existing bioinformatics tools. On the other hand, existing genomic data models do not represent clinical patient data. A framework was developed to support translational research by integrating biomolecular information coming from different “omics” technologies with patient’s clinical and socio-demographic data. This framework should present some features: flexibility, compression and robustness. The experiments accomplished from a use case demonstrated that the proposed system meets requirements of flexibility and robustness, leading to the desired integration. The Clinical Module can be accessed in http://dcm.ffclrp.usp.br/caib/pg=iptrans webcite.
Resumo:
Background To determine the characteristics of clinical care offered to type 1 diabetic patients across the four distinct regions of Brazil, with geographic and contrasting socioeconomic differences. Glycemic control, prevalence of cardiovascular risk factors, screening for chronic complications and the frequency that the recommended treatment goals were met using the American Diabetes Association guidelines were evaluated. Methods This was a cross-sectional, multicenter study conducted from December 2008 to December 2010 in 28 secondary and tertiary care public clinics in 20 Brazilian cities in north/northeast, mid-west, southeast and south regions. The data were obtained from 3,591 patients (56.0% females and 57.1% Caucasians) aged 21.2 ± 11.7 years with a disease duration of 9.6 ± 8.1 years (<1 to 50 years). Results Overall, 18.4% patients had HbA1c levels <7.0%, and 47.5% patients had HbA1c levels ≥ 9%. HbA1c levels were associated with lower economic status, female gender, age and the daily frequency of self-blood glucose monitoring (SBGM) but not with insulin regimen and geographic region. Hypertension was more frequent in the mid-west (32%) and north/northeast (25%) than in the southeast (19%) and south (17%) regions (p<0.001). More patients from the southeast region achieved LDL cholesterol goals and were treated with statins (p<0.001). Fewer patients from the north/northeast and mid-west regions were screened for retinopathy and nephropathy, compared with patients from the south and southeast. Patients from the south/southeast regions had more intensive insulin regimens than patients from the north/northeast and mid-west regions (p<0.001). The most common insulin therapy combination was intermediate-acting with regular human insulin, mainly in the north/northeast region (p<0.001). The combination of insulin glargine with lispro and glulisine was more frequently used in the mid-west region (p<0.001). Patients from the north/northeast region were younger, non-Caucasian, from lower economic status, used less continuous subcutaneous insulin infusion, performed less SBGM and were less overweight/obese (p<0.001). Conclusions A majority of patients, mainly in the north/northeast and mid-west regions, did not meet metabolic control goals and were not screened for diabetes-related chronic complications. These results should guide governmental health policy decisions, specific to each geographic region, to improve diabetes care and decrease the negative impact diabetes has on the public health system.
Resumo:
Abstract Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.