5 resultados para reactor safety experiments

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on results obtained from experiments carried out in an acidogenic anaerobic reactor aiming at the optimization of hydrogen production by altering the degree of back-mixing. It was hypothesized that there is an optimum operating point that maximizes the hydrogen yield. Experiments were performed in a packed-bed bioreactor by covering a broad range of recycle ratios (R) and the optimum point was obtained for an R value of 0.6. In this operating condition the reactor behaved as 8 continuous stirred-tank reactors in series and the maximum yield was 4.22 mol H-2 mol sucrose(-1). Such optimum point was estimated by deriving a polynomial function fitted to experimental data and it was obtained as the conjugation of three factors related to the various degrees of back-mixing applied to the reactor: mass transfer from the bulk liquid to the biocatalyst, liquid-to-gas mass transfer and the kinetic behavior of irreversible reactions in series. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lepton mixing angle theta(13), the only unknown angle in the standard three-flavor neutrino mixing scheme, is finally measured by the recent reactor and accelerator neutrino experiments. We perform a combined analysis of the data coming from T2K, MINOS, Double Chooz, Daya Bay and RENO experiments and find sin(2)2 theta(13) = 0.096 +/- 0.013(+/- 0.040) at 1 sigma (3 sigma) CL and that the hypothesis theta(13) = 0 is now rejected at a significance level of 7.7 sigma. We also discuss the near future expectation on the precision of the theta(13) determination by using expected data from these ongoing experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of the core-annular flow pattern, where a thin fluid surrounds a very viscous one, has been suggested as an attractive artificial-lift method for heavy oils in the current Brazilian ultra-deepwater production scenario. This paper reports the pressure drop measurements and the core-annular flow observed in a 2 7/8-inch and 300 meter deep pilot-scale well conveying a mixture of heavy crude oil (2000 mPa.s and 950 kg/m3 at 35 C) and water at several combinations of the individual flow rates. The two-phase pressure drop data are compared with those of single-phase oil flow to assess the gains due to water injection. Another issue is the handling of the core-annular flow once it has been established. High-frequency pressure-gradient signals were collected and a treatment based on the Gabor transform together with neural networks is proposed as a promising solution for monitoring and control. The preliminary results are encouraging. The pilot-scale tests, including long-term experiments, were conducted in order to investigate the applicability of using water to transport heavy oils in actual wells. It represents an important step towards the full scale application of the proposed artificial-lift technology. The registered improvements in terms of oil production rate and pressure drop reductions are remarkable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider an alternative explanation for the deficit of nu(e) in Ga solar neutrino calibration experiments and of the (nu) over bar (e) in short-baseline reactor experiments by a model where neutrinos can oscillate into sterile Kaluza-Klein modes that can propagate in compactified submicrometer flat extra dimensions. We have analyzed the results of the gallium radioactive source experiments and 19 reactor experiments with baseline shorter than 100 m, and showed that these data can be fit into this scenario. The values of the lightest neutrino mass and of the size of the largest extra dimension that are compatible with these experiments are mostly not excluded by other neutrino oscillation experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar reactors can be attractive in photodegradation processes due to lower electrical energy demand. The performance of a solar reactor for two flow configurations, i.e., plug flow and mixed flow, is compared based on experimental results with a pilot-scale solar reactor. Aqueous solutions of phenol were used as a model for industrial wastewater containing organic contaminants. Batch experiments were carried out under clear sky, resulting in removal rates in the range of 96100?%. The dissolved organic carbon removal rate was simulated by an empirical model based on neural networks, which was adjusted to the experimental data, resulting in a correlation coefficient of 0.9856. This approach enabled to estimate effects of process variables which could not be evaluated from the experiments. Simulations with different reactor configurations indicated relevant aspects for the design of solar reactors.