19 resultados para protein serine threonine kinase inhibitor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)
Resumo:
Contents The aim of this study was to determine the effect of temporary inhibition of meiosis using the cyclin-dependent kinase inhibitor butyrolactone I (BLI) on gene expression in bovine oocytes and cumulus cells. Immature bovine cumulusoocyte complexes (COCs) were assigned to groups: (i) Control COCs collected immediately after recovery from the ovary or (ii) after in vitro maturation (IVM) for 24 h, (iii) Inhibited COCs collected 24 h after incubation with 100 mu m BLI or (iv) after meiotic inhibition for 24 h followed by IVM for a further 22 h. For mRNA relative abundance analysis, pools of 10 denuded oocytes and respective cumulus cells were collected. Transcripts related to cell cycle regulation and oocyte competence were evaluated in oocytes and cumulus cells by quantitative real-time PCR (qPCR). Most of the examined transcripts were downregulated (p < 0.05) after IVM in control and inhibited oocytes (19 of 35). Nine transcripts remained stable (p > 0.05) after IVM in control oocytes; only INHBA did not show this pattern in inhibited oocytes. Seven genes were upregulated after IVM in control oocytes (p < 0.05), and only PLAT, RBP1 and INHBB were not upregulated in inhibited oocytes after IVM. In cumulus cells, six genes were upregulated (p < 0.05) after IVM and eight were downregulated (p < 0.05). Cells from inhibited oocytes showed the same pattern of expression regarding maturation profile, but were affected by the temporary meiosis inhibition of the oocyte when the same maturation stages were compared between inhibited and control groups. In conclusion, changes in transcript abundance in oocytes and cumulus cells during maturation in vitro were mostly mirrored after meiotic inhibition followed by maturation.
Resumo:
Cediranib is a potent inhibitor of the VEGF family receptor tyrosine kinases, and a new agent in cancer treatment. The drug has shown promising activity in a variety of solid malignancies, in preclinical models and in clinical trials. Its pharmacokinetics allow for a convenient once-daily administration, with a toxicity profile that is very similar to other VEGF inhibitors. Its main side effects include hypertension, nausea, dysphonia, fatigue and diarrhea. Adverse events seem to be manageable, especially when used in doses lower than 45 mg/day. Studies have shown some activity as a single agent or in combination in advanced tumors, but not enough to secure its approval for routine use up to now. Clinical trials are still evaluating the role of cediranib in combination chemotherapy with cytotoxic agents.
Resumo:
High systolic blood pressure caused by endothelial dysfunction is a comorbidity of metabolic syndrome that is mediated by local inflammatory signals. Insulin-induced vasorelaxation due to endothelial nitric oxide synthase (eNOS) activation is highly dependent on the activation of the upstream insulin-stimulated serine/threonine kinase (AKT) and is severely impaired in obese, hypertensive rodents and humans. Neutralisation of circulating tumor necrosis factor-α (TNFα) with infliximab improves glucose homeostasis, but the consequences of this pharmacological strategy on systolic blood pressure and eNOS activation are unknown. To address this issue, we assessed the temporal changes in the systolic pressure of spontaneously hypertensive rats (SHR) treated with infliximab. We also assessed the activation of critical proteins that mediate insulin activity and TNFα-mediated insulin resistance in the aorta and cardiac left ventricle. Our data demonstrate that infliximab prevents the upregulation of both systolic pressure and left ventricle hypertrophy in SHR. These effects paralleled an increase in AKT/eNOS phosphorylation and a reduction in the phosphorylation of inhibitor of nuclear factor-κB (Iκβ) and c-Jun N-terminal kinase (JNK) in the aorta. Overall, our study revealed the cardiovascular benefits of infliximab in SHR. In addition, the present findings further suggested that the reduction of systolic pressure and left ventricle hypertrophy by infliximab are secondary effects to the reduction of endothelial inflammation and the recovery of AKT/eNOS pathway activation.
Resumo:
Background. Nuclear factor kappa B (NF kappa B) plays a potential role in tolerance by orchestrating onset and resolution of inflammation and regulatory T cell differentiation through subunit c-Rel. We characterized cellular infiltrates and expression of NF kappa B1, c-Rel and its upstream regulators phosphatidylinositol 3-kinase/RAC-alpha serine/threonine kinase, in allograft biopsies from patients with spontaneous clinical operational tolerance (COT). Methods. Paraffin-fixed kidney allograft biopsies from 40 patients with COT (n=4), interstitial rejection (IR; n=12), borderline changes (BC; n=12), and long-term allograft function without rejection (NR; n=12) were used in the study. Cellular infiltrates and immunohistochemical expression of key proteins of the NF kappa B pathway were evaluated in the cortical tubulointerstitium and in cellular infiltrates using digital image analysis software. Results were given as mean +/- SEM. Results. Biopsies from patients with COT exhibited a comparable amount of cellular infiltrate to IR, BC, and NR (COT, 191 +/- 81; IR, 291 +/- 62; BC, 178 +/- 45; and NR, 210 +/- 42 cells/mm(2)) but a significantly higher proportion of forkhead box P3-positive cells (COT, 11%+/- 1.7%; IR, 3.5%+/- 0.70%; BC, 3.4%+/- 0.57%; and NR, 3.7%+/- 0.78% of infiltrating cells; P=0.02). c-Rel expression in cellular infiltrates was significantly elevated in IR, BC, and NR when analyzing the number of positive cells per mm(2) (P=0.02) and positive cells per infiltrating cells (P=0.04). In contrast, tubular PI3K and c-Rel expression were significantly higher in IR and BC but not in NR compared with COT (P=0.03 and P=0.006, respectively). With RAC-alpha serine-threonine kinase, similar tendencies were observed (P=0.2). Conclusions. Allografts from COT patients show significant cellular infiltrates but a distinct expression of proteins involved in the NF kappa B pathway and a higher proportion of forkhead box P3-positive cells.
Resumo:
Intracellular pattern recognition receptors such as the nucleotide-binding oligomerization domain (NOD)-like receptors family members are key for innate immune recognition of microbial infection and may play important roles in the development of inflammatory diseases, including rheumatic diseases. In this study, we evaluated the role of NOD1 and NOD2 on development of experimental arthritis. Ag-induced arthritis was generated in wild-type, NOD1(-/-)!, NOD2(-/-), or receptor-interacting serine-threonine kinase 2(-/-) (RIPK2(-/-)) immunized mice challenged intra-articularly with methylated BSA. Nociception was determined by electronic Von Frey test. Neutrophil recruitment and histopathological analysis of proteoglycan lost was evaluated in inflamed joints. Joint levels of inflammatory cytokine/chemokine were measured by ELISA. Cytokine (IL-6 and IL-23) and NOD2 expressions were determined in mice synovial tissue by RT-PCR. The NOD2(-/-) and RIPK2(-/-), but not NOD1(-/-), mice are protected from Ag-induced arthritis, which was characterized by a reduction in neutrophil recruitment, nociception, and cartilage degradation. NOD2/RIPK2 signaling impairment was associated with a reduction in proinflammatory cytokines and chemokines (TNF, IL-1 beta, and CXCL1/KC). IL-17 and IL-17 triggering cytokines (IL-6 and IL-23) were also reduced in the joint, but there is no difference in the percentage of CD4(+) IL-17(+) cells in the lymph node between arthritic wild-type and NOD2(-/-) mice. Altogether, these findings point to a pivotal role of the NOD2/RIPK2 signaling in the onset of experimental arthritis by triggering an IL-17-dependent joint immune response. Therefore, we could propose that NOD2 signaling is a target for the development of new therapies for the control of rheumatoid arthritis. The Journal of Immunology, 2012, 188: 5116-5122.
Resumo:
Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.
Resumo:
SET protein (I2PP2A) is an inhibitor of PP2A, which regulates the phosphorylated Akt (protein kinase B) levels. We assessed the effects of SET overexpression in HEK293T cells, both in the presence and the absence of mild oxidative stress induced by 50 mu M tert-butyl hydroperoxide. Immunoblotting assays demonstrated that SET accumulated in HEK293T cells and increased the levels of phosphorylated Akt and PTEN; in addition, SET decreased glutathione antioxidant defense of cell and increased expression of genes encoding antioxidant defense proteins. Immunofluorescence analysis demonstrated that accumulated SET was equally distributed in cytoplasm and nucleus; however, in cells that had been exposed to oxidative stress, SET was found in large aggregates in the cytoplasm. SET accumulation in HEK293T cells correlated with inhibition of basal apoptosis as evidenced by a decrease in annexin V staining and activity of caspases; under mild oxidative stress, SET accumulation correlated with caspase-independent cell death, as evidenced by increased PI and annexin V/PI double staining. The results suggest that accumulated SET could act via Akt/PTEN either as cell survival signal or as oxidative stress sensor for cell death.
Resumo:
Background: Imatinib mesylate (IM) is a selective tyrosine kinase inhibitor used for treating chronic myeloid leukemia (CML). IM has high efficacy, however some individuals develop a resistance due to impaired bio-availability. Polymorphisms in genes encoding membrane transporters such as ABCB1 have been associated with differences in protein expression and function that influence the response to several drugs. Aim: To investigate the relationship of ABCB1 polymorphisms with markers of response to IM in patients with CML Methods: One hundred eighteen CML patients initially treated with a standard dose of IM (400 mg/day) for 18 months were selected at two health centers in Sao Paulo City, Brazil. The response criteria were based on the European LeukemiaNet recommendations. ABCB1 polymorphisms c.1236C>T (rs1128503), c.3435C>T (rs1045642) and c.2677G>T/A (rs2032582) were evaluated by PCR-RFLP. Results: ABCB1 polymorphisms were not related with a risk for CML in this sample population (p<0.05). In the CML group, frequencies of ABCB1 SNPs were similar between responder and non-responder patients (p>0.05). In the responder group, the frequency of ABCB11236CT/2677GT/3435CT haplotype was higher in patients with major molecular response (MMR) (51.7%) than in patients without MMR (8.3%, p = 0.010). Furthermore, carriers of this haplotype had increased the probability of reaching the MMR compared with the non-carriers (OR: 11.8; 95% CI: 1.43-97.3, p = 0.022). Conclusions: The ABCB1 1236CT/2677GT/3435CT haplotype is positively associated with the major molecular response to IM in CML patients. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Glioblastoma remains one of the most devastating human malignancies, and despite therapeutic advances, there are no drugs that significantly improve the patient survival. Altered expression of the Aurora kinases was found in different malignancies, and their inhibition has been studied in cancer therapy. In this study, we analyzed the expression of Aurora A and Aurora B in glioblastoma samples and also analyzed whether the effects of Aurora kinase inhibition were associated with temozolomide or not on cell lines and primary cultures of glioblastoma. RT-PCR assays were used to determine the mRNA expression in glioblastoma tumor samples and in the cell lines. Cell proliferation was measured by XTT assay, and apoptosis was determined by flow cytometry. Drug combination analyses were made based in Chou-Talalay method. Gamma radiation for clonogenic survival used the doses of 2, 4 and 6 Gy. Changes in Aurora B level were assessed by Western blot analysis. Aurora A and B were expressed in glioblastoma samples as well as in the glioblastoma cell lines (n = 6). Moreover, ZM447439, a selective Aurora kinase inhibitor, decreased the proliferation separately and synergistically with temozolomide in primary cultures and cell lines of glioblastoma. ZM also enhanced the effects of radiation on the two cell lines studied (U343 and U251), mainly when associated with TMZ in U343 cells. Treatment with ZM induced apoptotic cell death and diminished Aurora B protein level. These data suggest that Aurora kinase inhibition may be a target for glioblastoma treatment and could be used as adjuvant to chemo- and radiotherapy.
Resumo:
Focal adhesion kinase (FAK) regulates cellular processes that affect several aspects of development and disease. The FAK N-terminal FERM (4.1 protein-ezrin-radixin-moesin homology) domain, a compact clover-leaf structure, binds partner proteins and mediates intramolecular regulatory interactions. Combined chemical cross-linking coupled to MS, small-angle X-ray scattering, computational docking and mutational analyses showed that the FAK FERM domain has a molecular cleft (similar to 998 angstrom(2)) that interacts with sarcomeric myosin, resulting in FAK inhibition. Accordingly, mutations in a unique short amino acid sequence of the FERM myosin cleft, FP-1, impaired the interaction with myosin and enhanced FAK activity in cardiomyocytes. An FP-1 decoy peptide selectively inhibited myosin interaction and increased FAK activity, promoting cardiomyocyte hypertrophy through activation of the AKT-mammalian target of rapamycin pathway. Our findings uncover an inhibitory interaction between the FAK FERM domain and sarcomeric myosin that presents potential opportunities to modulate the cardiac hypertrophic response through changes in FAK activity.
Resumo:
Abstract Background Down syndrome is the most frequent genetic disorder in humans. Rare cases involving partial trisomy of chromosome 21 allowed a small chromosomal region common to all carriers, called Down Syndrome Critical Region (DSCR), to be determined. The DSCR1 gene was identified in this region and is expressed preferentially in the brain, heart and skeletal muscle. Recent studies have shown that DSCR1 belongs to a family of proteins that binds and inhibits calcineurin, a serine-threonine phosphatase. The work reported on herein consisted of a study of the subcellular location of DSCR1 and DSCR1-mutated forms by fusion with a green fluorescent protein, using various cell lines, including human. Results The protein's location was preferentially nuclear, independently of the isoform, cell line and insertion in the GFP's N- or C-terminal. A segment in the C-terminal, which is important in the location of the protein, was identified by deletion. On the other hand, site-directed mutational analyses have indicated the involvement of some serine and threonine residues in this event. Conclusion In this paper, we discuss the identification of amino acids which can be important for subcellular location of DSCR1. The involvement of residues that are prone to phosphorylation suggests that the location and function of DSCR1 may be regulated by kinases and/or phosphatases.
Resumo:
Background The malignant B cells in chronic lymphocytic leukemia receive signals from the bone marrow and lymph node microenvironments which regulate their survival and proliferation. Characterization of these signals and the pathways that propagate them to the interior of the cell is important for the identification of novel potential targets for therapeutic intervention. Design and Methods We compared the gene expression profiles of chronic lymphocytic leukemia B cells purified from bone marrow and peripheral blood to identify genes that are induced by the bone marrow microenvironment. Two of the differentially expressed genes were further studied in cell culture experiments and in an animal model to determine whether they could represent appropriate therapeutic targets in chronic lymphocytic leukemia. Results Functional classification analysis revealed that the majority of differentially expressed genes belong to gene ontology categories related to cell cycle and mitosis. Significantly up-regulated genes in bone marrow-derived tumor cells included important cell cycle regulators, such as Aurora A and B, survivin and CDK6. Down-regulation of Aurora A and B by RNA interference inhibited proliferation of chronic lymphocytic leukemia-derived cell lines and induced low levels of apoptosis. A similar effect was observed with the Aurora kinase inhibitor VX-680 in primary chronic lymphocytic leukemia cells that were induced to proliferate by CpG-oligonucleotides and interleukin-2. Moreover, VX-680 significantly blocked leukemia growth in a mouse model of chronic lymphocytic leukemia. Conclusions Aurora A and B are up-regulated in proliferating chronic lymphocytic leukemia cells and represent potential therapeutic targets in this disease.
Resumo:
Objectives: To investigate the role of toll-like receptor 9 on sepsis-induced failure of neutrophil recruitment to the site of infection. Design: Prospective experimental study. Setting: University research laboratory. Interventions: Model of polymicrobial sepsis induced by cecal ligation and puncture in wild-type and toll-like receptor 9-deficient mice. Measurements and Main Results: Toll-like receptor 9-deficient mice with cecal ligation and puncture-induced severe sepsis did not demonstrate failure of neutrophil migration and consequently had a low systemic inflammatory response and a high survival rate. Upon investigating the mechanism by which toll-like receptor 9-deficiency prevents the failure of neutrophil migration, it was found that neutrophils derived from toll-like receptor 9-deficient mice with cecal ligation and puncture induced severe sepsis expressed high levels of chemokine C-X-C motif receptor 2 (CXCR2) and had reduced induction of G-protein-coupled receptor kinase 2. Conclusions: These findings suggest that the poor outcome of severe sepsis is associated with toll-like receptor 9 activation in neutrophils, which triggers G-protein-coupled receptor kinase 2 expression and CXCR2 downregulation. These events account for the reduction of neutrophil migration to the site of infection, with consequent spreading of the infection, onset of the systemic inflammatory response, and a decrease in survival. (Crit Care Med 2012; 40:2631-2637)
Resumo:
It has been previously shown that besides its classical role in blood pressure control the reninangiotensin system, mainly by action of angiotensin II on the AT1 receptor, exerts pro-inflammatory effects such as by inducing the production of cytokines. More recently, alternative pathways to this system were described, such as binding of angiotensin-(17) to receptor Mas, which was shown to counteract some of the effects evoked by activation of the angiotensin IIAT1 receptor axis. Here, by means of different molecular approaches we investigated the role of angiotensin-(17) in modulating inflammatory responses triggered in mouse peritoneal macrophages. Our results show that receptor Mas transcripts were up-regulated by eightfold in LPS-induced macrophages. Interestingly, macrophage stimulation with angiotensin-(17), following to LPS exposure, evoked an attenuation in expression of TNF-a and IL-6 pro-inflammatory cytokines; where this event was abolished when the receptor Mas selective antagonist A779 was also included. We then used heterologous expression of the receptor Mas in HEK293T cells to search for the molecular mechanisms underlying the angiotensin-(17)-mediated anti-inflammatory responses by a kinase array; what suggested the involvement of the Src kinase family. In LPS-induced macrophages, this finding was corroborated using the PP2 compound, a specific Src kinase inhibitor; and also by Western blotting when we observed that Ang-(17) attenuated the phosphorylation levels of Lyn, a member of the Src kinase family. Our findings bring evidence for an anti-inflammatory role for angiotensin-(17) at the cellular level, as well as show that its probable mechanism of action includes the modulation of Src kinases activities. J. Cell. Physiol. 227: 21172122, 2012. (C) 2011 Wiley Periodicals, Inc.