8 resultados para proportionality constant
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We present a new approach to determine the number and composition of guilds, using the hyperdiverse leaf-litter ant fauna as a model, based on appropriate morphological variables and species co-occurrence null models to describe the complex assemblages of interacting Species Community structure at the 1-m(2) scale. We obtained 18 linear morphometric measures from 949 workers of 171 leaf-litter ant species (18762 measurements) surveyed in four Atlantic Forest localities to test whether the assemblages are morphologically structured; the morphological characters were selected to indicate diet and foraging habits. Principal components analysis was used to characterize the morphospace and to describe the guild structure (number of species and composition). The guild proportionality assembly rule (significant tendency toward constant proportion of species in guilds) was assessed at the 1-m(2) scale. Our analysis indicates that the division of leaf-litter ants into guilds is based mainly on microhabitat distribution in the leaf-litter, body size and shape, eye size, and phylogeny. The same guild scheme applied to four more sites shows that different Atlantic Forest areas have the same leaf-fitter ant guilds. The guild proportionality assembly rule was confirmed for most guilds, Suggesting that there are guild-specific limitations on species coexistence within assemblages; on the other hand, in a few cases the variance in guild proportion was greater than expected under the null assumptions. Other studies on ant functional group classification are partially supported by our quantitative morphological analysis. Our results, however, imply that there are more compartments than indicated in previous models, particularly among cryptic species (confined to soil and litter) and tropical climate specialists. We argue that a general null model for the analysis of species association based oil morphology can reveal objectively defined groups and may thus contribute to a robust theory to explain community structure in general and have important consequences on studies of litter ant community ecology in particular.
Resumo:
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie's constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ.
Resumo:
Using theoretical arguments, a simple scaling law for the size of the intrinsic rotation observed in tokamaks in the absence of a momentum injection is found: The velocity generated in the core of a tokamak must be proportional to the ion temperature difference in the core divided by the plasma current, independent of the size of the device. The constant of proportionality is of the order of 10 km . s(-1) . MA . keV(-1). When the intrinsic rotation profile is hollow, i.e., it is countercurrent in the core of the tokamak and cocurrent in the edge, the scaling law presented in this Letter fits the data remarkably well for several tokamaks of vastly different size and heated by different mechanisms.
Resumo:
In this work we have constructed axially symmetric vacuum solutions of the gravitational field equations in a Randall-Sundrum brane. A non-null effective cosmological constant is considered, and asymptotically de Sitter and anti-de Sitter spacetimes are obtained. The solutions describe rotating black holes in a four-dimensional brane. Optical features of the solutions are treated, emphasizing the rotation of the polarization vector along null congruences. DOI: 10.1103/PhysRevD.86.124047
Resumo:
Objective: To compare two methods of respiratory inductive plethysmography (RIP) calibration in three different positions. Methods: We evaluated 28 healthy subjects (18 women and 10 men), with a mean age of 25.4 +/- 3.9 years. For all of the subjects, isovolume maneuver calibration (ISOCAL) and qualitative diagnostic calibration (QDC) were used in the orthostatic, sitting, and supine positions. In order to evaluate the concordance between the two calibration methods, we used ANOVA and Bland-Altman plots. Results: The values of the constant of proportionality (X) were significantly different between ISOCAL and QDC in the three positions evaluated: 1.6 +/- 0.5 vs. 2.0 +/- 1.2, in the supine position, 2.5 +/- 0.8 vs. 0.6 +/- 0.3 in the sitting position, and 2.0 +/- 0.8 vs. 0.6 +/- 0.3 in the orthostatic position (p < 0.05 for all). Conclusions: Our results suggest that QDC is an inaccurate method for the calibration of RIP. The K values obtained with ISOCAL reveal that RIP should be calibrated for each position evaluated.
Resumo:
Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents.
Resumo:
The affinity of the d-galactose-binding lectin from Artocarpus heterophyllus lectin, known as jacalin, with immonuglobulins (Igs) was determined by biofunctionalization of a piezoelectric transducer. This piezoelectric biofunctionalized transducer was used as a mass-sensitive analytical tool, allowing the real-time binding analysis of jacalin-human immunoglobulin A1 (IgA(1)) and jacalin-bovine IgG(1) interactions from which the apparent affinity constant was calculated. The strategy was centered in immobilizing jacalin on the gold electrode's surface of the piezoelectric crystal resonator using appropriate procedures based on self-assembling of 11-mercaptoundecanoic acid and 2-mercaptoethanol thiol's mixture, a particular immobilization strategy by which it was possible to avoid cross-interaction between the proteins over electrode's surface. The apparent affinity constants obtained between jacalin-human IgA(1) and jacalin-bovine IgG(1) differed by 1 order of magnitude [(8.0 +/- 0.9) x 10(5) vs (8.3 +/- 0.1) x 10(6) L mol(-1)]. On the other hand, the difference found between human IgA(1) and human IgA(2) interaction with jacalin, eight times higher for IgA(1), was attributed to the presence of O-linked glycans in the IgA(1) hinge region, which is absent in IgA(2). Specific interaction of jacalin with O-glycans, proved to be present in the human IgA(1) and hypothetically present in bovine IgG(1) structures, is discussed as responsible for the obtained affinity values.
Resumo:
Abstract Background Blood leukocytes constitute two interchangeable sub-populations, the marginated and circulating pools. These two sub-compartments are found in normal conditions and are potentially affected by non-normal situations, either pathological or physiological. The dynamics between the compartments is governed by rate constants of margination (M) and return to circulation (R). Therefore, estimates of M and R may prove of great importance to a deeper understanding of many conditions. However, there has been a lack of formalism in order to approach such estimates. The few attempts to furnish an estimation of M and R neither rely on clearly stated models that precisely say which rate constant is under estimation nor recognize which factors may influence the estimation. Results The returning of the blood pools to a steady-state value after a perturbation (e.g., epinephrine injection) was modeled by a second-order differential equation. This equation has two eigenvalues, related to a fast- and to a slow-component of the dynamics. The model makes it possible to identify that these components are partitioned into three constants: R, M and SB; where SB is a time-invariant exit to tissues rate constant. Three examples of the computations are worked and a tentative estimation of R for mouse monocytes is presented. Conclusions This study establishes a firm theoretical basis for the estimation of the rate constants of the dynamics between the blood sub-compartments of white cells. It shows, for the first time, that the estimation must also take into account the exit to tissues rate constant, SB.