35 resultados para processing of beta subunits
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Intervention strategies regarding the biofortification of orange-fleshed sweet potato, which is a rich source of carotenoids for combating vitamin A deficiency, are being developed in Brazil. This study was conducted to evaluate the concentrations of individual carotenoids, total phenolic compounds and antioxidant capacity in the roots of four biofortified sweet potato cultivars that were raw or processed by four common heat treatments. HPLC, Folin-Ciocalteu, DPPH and ABTS assays were used. All cultivars showed high levels of carotenoids in raw roots, predominantly all-trans-beta-carotene (79.1-128.5 mg.100 g(-1) DW), suggesting a high estimated vitamin A activity. The CNPH 1194 cultivar reported carotenoids values highest than those of other cultivars (p < 0.05). The total phenolic compounds varied among cultivars and heat treatments (0.96-2.05 mg.g(-1) DW). In most cases, the heat treatments resulted in a significant decrease in the carotenoids and phenolic compounds contents as well as antioxidant capacity. Processing of flour presented the greatest losses of major carotenoids and phenolics. The phenolic compounds showed more stability than carotenoids after processing. There were significant correlations between the carotenoids and phenolic compounds and the antioxidant capacity.
Resumo:
Pharyngotonsillitis by beta-hemolytic Streptococcus mostly affects children and imunocompromissed, being Streptococcus pyogenes (Group A) the most common agent in bacterial pharyngotonsillitis. Aim: This work targeted the research of beta-hemolytic Streptococcus Group-A (SBHGA) and No-A (SBHGNA) in the oropharynx of individuals with special health needs from the APAE (Maceio-AL). Method: A prospective study with oropharynx samples from patients with Down syndrome and other mental disorders (test) and students from a private school (control) aged 5-15 years. Cultures in blood agar (5%) were identified through Gram/catalase tests and bacitracin/trirnethoprim-sulfamethoxazole disk diffusion method, applying the chi-squared statistical analysis. Results: A total of 222 bacterial colonies were isolated in 74 individuals from APAE and 65 in the control group. In the test group, previous episodes of pharyngotonsillitis were reported by 36.49% (27/74) and 9.46% (7/74) were diagnosed with symptoms and/or signs suggestive of oropharynx infection. No positive sample of S. pyogenes was confirmed at APAE, being all samples classified as SBHGNA, with 5 SBHGA in the control group. Conclusion: The early identification of beta-hemolytic Streptococcus is important for the fast treatment of pharyngotonsillitis and the absence of S. pyogenes avoid future suppurative or not-suppurative sequels in the group from APAE.
Resumo:
beta(2)-adrenergic receptor (beta(2)-AR) agonists have been used as ergogenics by athletes involved in training for strength and power in order to increase the muscle mass. Even though anabolic effects of beta(2)-AR activation are highly recognized, less is known about the impact of beta(2)-AR in endurance capacity. We presently used mice lacking beta(2)-AR [beta(2)-knockout (beta(2) KO)] to investigate the role of beta(2)-AR on exercise capacity and skeletal muscle metabolism and phenotype. beta(2) KO mice and their wild-type controls (WT) were studied. Exercise tolerance, skeletal muscle fiber typing, capillary-to-fiber ratio, citrate synthase activity and glycogen content were evaluated. When compared with WT, beta 2KO mice displayed increased exercise capacity (61%) associated with higher percentage of oxidative fibers (21% and 129% of increase in soleus and plantaris muscles, respectively) and capillarity (31% and 20% of increase in soleus and plantaris muscles, respectively). In addition, beta 2KO mice presented increased skeletal muscle citrate synthase activity (10%) and succinate dehydrogenase staining. Likewise, glycogen content (53%) and periodic acid-Schiff staining (glycogen staining) were also increased in beta 2KO skeletal muscle. Altogether, these data provide evidence that disruption of beta(2)AR improves oxidative metabolism in skeletal muscle of beta 2KO mice and this is associated with increased exercise capacity.
Resumo:
The jucara's palm (Euterpe edulis), native to the Atlantic Forest is one of the palms most exploited for the removal of heart palm and the tree was removed in large areas. The aim of this study was to examine the feasibility of the methodology of "minimally processed" in jucara's palm. The raw material was obtained by COOPERAGUA, Sete Barras (SP) through a Sustainable Management Plan culminating in a permit issued by IBAMA, Forestry Foundation and DPRN. The process began with the withdrawal of external sheaths and cut, with subsequent immersion in a solution of sodium metabisulphite (Na2S2O5 - 200 ppm), sanitize with a chlorine solution and soak in brine acidified to wait until the filling. The cuttings were placed in polyethylene bags containing acidified solution at concentrations A 0.225%, B 0.375%, C 0.6%, D 0.825% determined by titration curve. The staining became clearer in treatments C and D, due to more acidity, resulting in higher inactivation of enzymes. Even with these positive results, were concluded that minimal processing of jucara is not effective due to the blackout, preventing its commercialization. To stop it requires the bleaching step, which does not characterize it as minimally processed.
Resumo:
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.
Resumo:
This study aimed to measure, using fMRI, the effect of diazepam on the haemodynamic response to emotional faces. Twelve healthy male volunteers (mean age = 24.83 +/- 3.16 years), were evaluated in a randomized, balanced-order, double-blind, placebo-controlled crossover design. Diazepam (10 mg) or placebo was given 1 h before the neuroimaging acquisition. In a blocked design covert face emotional task, subjects were presented with neutral (A) and aversive (B) (angry or fearful) faces. Participants were also submitted to an explicit emotional face recognition task, and subjective anxiety was evaluated throughout the procedures. Diazepam attenuated the activation of right amygdala and right orbitofrontal cortex and enhanced the activation of right anterior cingulate cortex (ACC) to fearful faces. In contrast, diazepam enhanced the activation of posterior left insula and attenuated the activation of bilateral ACC to angry faces. In the behavioural task, diazepam impaired the recognition of fear in female faces. Under the action of diazepam, volunteers were less anxious at the end of the experimental session. These results suggest that benzodiazepines can differentially modulate brain activation to aversive stimuli, depending on the stimulus features and indicate a role of amygdala and insula in the anxiolytic action of benzodiazepines.
Resumo:
The effects of drying air inlet temperature (IT) and concentration of Aerosil 200 (C-A) on several properties of spray-dried Apeiba tibourbou extracts were investigated following a 3(2) full factorial design. Powder recovery varied from 9.83 to 46.95% and dried products showed moisture contents below 7%. Although the spray-dried products lost some of their polyphenols, they still present excellent antioxidant activity, opening perspectives for its use to medicinal purpose. C-A exerted a key role on the properties of spray-dried extracts, while IT did not present a significative influence. Aerosil (R) 200 proved to be an interesting alternative as an excipient for the drying of the herbal extract, even at intermediate concentrations such as 15%. The best combination of conditions to use for obtaining dry A. tibourbou extracts with adequate physicochemical and functional properties involves an IT of 100 degrees C and a C-A of 15%.
Resumo:
This theoretical study proposes a reflection on the intrinsic resistance of the subclass Coccidia, particularly the genus Cryptosporidium, considered to be potential pathogens for immunocompromised patients, and the implications for nursing practice. Currently, the international and national guidelines support the chemical disinfection of digestive system endoscopes after their cleansing as a safe and effective procedure. However, studies show that microorganisms of the subclass Coccidia, namely Cryptosporidium, responsible for enteric infection, are more resistant than mycobacteria and are not inactivated by high-level disinfectants, except for hydrogen peroxide 6% and 7.5%, which are not currently available in Brazil. We conclude that the legislation should include this agent among test microorganisms for approving high-level disinfectants. Health authorities should make efforts to ensure that healthcare institutions have access to effective disinfectants against Cryptosporidium.
Resumo:
The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The kinetic resolution of chiral beta-borylated carboxylic esters via lipase-catalyzed hydrolysis and transesterification reactions was studied. The enantioselective hydrolysis catalyzed by CAL-B furnished the beta-borylated carboxylic acid with reasonable enantiomeric excess (62% ee), while both methyl and ethyl beta-borylated carboxylic esters were recovered with excellent ee (>99%). Meanwhile, the transesterification reaction of beta-borylated carboxylic esters and several alcohols, catalyzed by CAL-B, only indicated a high selectivity when ethanol and methyl-(beta-pinacolylboronate)-butanoate were used as substrates, which gave ethyl-(beta-pinacolylboronate)-butanoate with >99% ee. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report integral cross sections for elastic electron scattering by the lignin subunits phenol, guaiacol, and p-coumaryl alcohol. Our calculations employed the Schwinger multichannel method with pseudopotentials and indicate three to four pi* shape resonances for each of these systems, suggesting that low-energy electrons could efficiently transfer energy into the lignin matrix. We also discuss dissociation mechanisms based on the calculated cross sections, available experimental data, virtual orbital analysis, and the knowledge on electron interactions with biomolecules. Our results point out a physical-chemical basis for electron-driven biomass delignification. The latter would be an essential step for efficient biofuel production from lignocellulosic materials.
Resumo:
Neutron-rich isotopes around lead, beyond N = 126, have been studied exploiting the fragmentation of an uranium primary beam at the FRS-RISING setup at GSI. For the first time beta-decay half-lives of Bi-219 and Tl-211,Tl-212,Tl-213 isotopes have been derived. The half-lives have been extracted using a numerical simulation developed for experiments in high-background conditions. Comparison with state of the art models used in r-process calculations is given, showing a systematic underestimation of the experimental values, at variance from close-lying nuclei. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
beta-Carotene (BC) is one of the natural pigments that is most commonly added to food; however, the utilization of BC is limited due to its instability. Microencapsulation techniques are commonly used because they can protect the microencapsulated material from oxidization. Nevertheless, the properties of the encapsulated compounds must be studied. We compared the antigenotoxic potential of pure and microencapsulated beta-carotene (mBC) in Wistar rats. Two doses of BC or mBC (2.5 or 5.0 mg/kg) were administered by gavage over a period of 14 days. The final gavage was followed by an injection of doxorubicin (DXR). After 24 h the animals were euthanized. The micronucleus test results showed that when both mBC and DXR were given, only the higher dose was antigenotoxic. The results of the comet assay show that when given in association with DXR, mBC had protective effects in the liver. The differences between the results obtained with BC and mBC suggest that possibly the carotenoid biodisponibility was modified by the process of microencapsulation. In conclusion, mBC does not lose its protective properties, but higher doses must be used to observe antigenotoxic effects. This is the first time that the genotoxicity and antigenotoxicity of a microencapsulated compound was evaluated in vivo. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.
Resumo:
Proton nuclear magnetic resonance (H-1 NMR) spectroscopy for detection of biochemical changes in biological samples is a successful technique. However, the achieved NMR resolution is not sufficiently high when the analysis is performed with intact cells. To improve spectral resolution, high resolution magic angle spinning (HR-MAS) is used and the broad signals are separated by a T-2 filter based on the CPMG pulse sequence. Additionally, HR-MAS experiments with a T-2 filter are preceded by a water suppression procedure. The goal of this work is to demonstrate that the experimental procedures of water suppression and T-2 or diffusing filters are unnecessary steps when the filter diagonalization method (FDM) is used to process the time domain HR-MAS signals. Manipulation of the FDM results, represented as a tabular list of peak positions, widths, amplitudes and phases, allows the removal of water signals without the disturbing overlapping or nearby signals. Additionally, the FDM can also be used for phase correction and noise suppression, and to discriminate between sharp and broad lines. Results demonstrate the applicability of the FDM post-acquisition processing to obtain high quality HR-MAS spectra of heterogeneous biological materials.