13 resultados para process optimization

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, an effective microbial consortium for the biodegradation of phenol was grown under different operational conditions, and the effects of phosphate concentration (1.4 g L-1, 2.8 g L-1, 4.2 g L-1), temperature (25 degrees C, 30 degrees C, 35 degrees C), agitation (150 rpm, 200 rpm, 250 rpm) and pH (6, 7, 8) on phenol degradation were investigated, whereupon an artificial neural network (ANN) model was developed in order to predict degradation. The learning, recall and generalization characteristics of neural networks were studied using data from the phenol degradation system. The efficiency of the model generated by the ANN was then tested and compared with the experimental results obtained. In both cases, the results corroborate the idea that aeration and temperature are crucial to increasing the efficiency of biodegradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing studies of on-line process control are concerned with economic aspects, and the parameters of the processes are optimized with respect to the average cost per item produced. However, an equally important dimension is the adoption of an efficient maintenance policy. In most cases, only the frequency of the corrective adjustment is evaluated because it is assumed that the equipment becomes "as good as new" after corrective maintenance. For this condition to be met, a sophisticated and detailed corrective adjustment system needs to be employed. The aim of this paper is to propose an integrated economic model incorporating the following two dimensions: on-line process control and a corrective maintenance program. Both performances are objects of an average cost per item minimization. Adjustments are based on the location of the measurement of a quality characteristic of interest in a three decision zone. Numerical examples are illustrated in the proposal. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we discuss the detection of glucose and triglycerides using information visualization methods to process impedance spectroscopy data. The sensing units contained either lipase or glucose oxidase immobilized in layer-by-layer (LbL) films deposited onto interdigitated electrodes. The optimization consisted in identifying which part of the electrical response and combination of sensing units yielded the best distinguishing ability. It is shown that complete separation can be obtained for a range of concentrations of glucose and triglyceride when the interactive document map (IDMAP) technique is used to project the data into a two-dimensional plot. Most importantly, the optimization procedure can be extended to other types of biosensors, thus increasing the versatility of analysis provided by tailored molecular architectures exploited with various detection principles. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of glycerol concentration (C-g), process temperature (T-p), drying temperature (T-s), and relative humidity (RH) on the properties of achira flour films was initially assessed. The optimized process conditions were C-g of 17g glycerol/100g flour, T-p of 90 degrees C, T-s of 44.8 degrees C, and RH of 36.4%. The films produced under these conditions displayed high mechanical strength (7.0 MPa), low solubility (38.3%). and satisfactory elongation values (14.6%). This study showed that achira flour is a promising source for the development of biodegradable films with good mechanical properties, low water vapor permeability, and solubility compared to films based on other tubers. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluates the potential for using different effluents for simultaneous H-2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H-2 was produced from parboiled rice wastewater (23.9 mL g(-1) chemical oxygen demand [COD]) and vinasse (20.8 mL g(-1) COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3 mL g(-1) COD), followed by parboiled rice wastewater (115.5 mL g(-1) COD) and glycerol (180.1 mL g(-1) COD). The maximum amount of CH4 was observed for vinasse (255.4 mL g(-1) COD). The total energy recovery from vinasse (10.4 kJ g(-1) COD) corresponded to the maximum COD reduction (74.7 %), followed by glycerol (70.38 %, 7.20 kJ g(-1) COD), parboiled rice wastewater (63.91 %, 4.92 kJ g(-1) COD), and sewage (51.11 %, 1.85 kJ g(-1) COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H-2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H-2 and CH4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background ArtinM is a D-mannose-specific lectin from Artocarpus integrifolia seeds that induces neutrophil migration and activation, degranulation of mast cells, acceleration of wound healing, induction of interleukin-12 production by macrophages and dendritic cells, and protective T helper 1 immune response against Leishmania major, Leishmania amazonensis and Paracoccidioides brasiliensis infections. Considering the important biological properties of ArtinM and its therapeutic applicability, this study was designed to produce high-level expression of active recombinant ArtinM (rArtinM) in Escherichia coli system. Results The ArtinM coding region was inserted in pET29a(+) vector and expressed in E. coli BL21(DE3)-Codon Plus-RP. The conditions for overexpression of soluble ArtinM were optimized testing different parameters: temperatures (20, 25, 30 or 37°C) and shaking speeds (130, 200 or 220 rpm) during induction, concentrations of the induction agent IPTG (0.01-4 mM) and periods of induction (1-19 h). BL21-CodonPlus(DE3)-RP cells induced under the optimized conditions (incubation at 20°C, at a shaking speed of 130 rpm, induction with 0.4 mM IPTG for 19 h) resulted in the accumulation of large amounts of soluble rArtinM. The culture provided 22.4 mg/L of rArtinM, which activity was determined by its one-step purification through affinity chromatography on immobilized D-mannose and glycoarray analysis. Gel filtration showed that rArtinM is monomeric, contrasting with the tetrameric form of the plant native protein (jArtinM). The analysis of intact rArtinM by mass spectrometry revealed a 16,099.5 Da molecular mass, and the peptide mass fingerprint and esi-cid-ms/ms of amino acid sequences of peptides from a tryptic digest covered 41% of the total ArtinM amino acid sequence. In addition, circular dichroism and fluorescence spectroscopy of rArtinM indicated that its global fold comprises β-sheet structure. Conclusions Overall, the optimized process to express rArtinM in E. coli provided high amounts of soluble, correctly folded and active recombinant protein, compatible with large scale production of the lectin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many engineering sectors are challenged by multi-objective optimization problems. Even if the idea behind these problems is simple and well established, the implementation of any procedure to solve them is not a trivial task. The use of evolutionary algorithms to find candidate solutions is widespread. Usually they supply a discrete picture of the non-dominated solutions, a Pareto set. Although it is very interesting to know the non-dominated solutions, an additional criterion is needed to select one solution to be deployed. To better support the design process, this paper presents a new method of solving non-linear multi-objective optimization problems by adding a control function that will guide the optimization process over the Pareto set that does not need to be found explicitly. The proposed methodology differs from the classical methods that combine the objective functions in a single scale, and is based on a unique run of non-linear single-objective optimizers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes two new approaches for the sensitivity analysis of multiobjective design optimization problems whose performance functions are highly susceptible to small variations in the design variables and/or design environment parameters. In both methods, the less sensitive design alternatives are preferred over others during the multiobjective optimization process. While taking the first approach, the designer chooses the design variable and/or parameter that causes uncertainties. The designer then associates a robustness index with each design alternative and adds each index as an objective function in the optimization problem. For the second approach, the designer must know, a priori, the interval of variation in the design variables or in the design environment parameters, because the designer will be accepting the interval of variation in the objective functions. The second method does not require any law of probability distribution of uncontrollable variations. Finally, the authors give two illustrative examples to highlight the contributions of the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant–Kirchhoff constitutive law, and strong differences are found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Biofuels produced from sugarcane bagasse (SB) have shown promising results as a suitable alternative of gasoline. Biofuels provide unique, strategic, environmental and socio-economic benefits. However, production of biofuels from SB has negative impact on environment due to the use of harsh chemicals during pretreatment. Consecutive sulfuric acid-sodium hydroxide pretreatment of SB is an effective process which eventually ameliorates the accessibility of cellulase towards cellulose for the sugars production. Alkaline hydrolysate of SB is black liquor containing high amount of dissolved lignin. Results This work evaluates the environmental impact of residues generated during the consecutive acid-base pretreatment of SB. Advanced oxidative process (AOP) was used based on photo-Fenton reaction mechanism (Fenton Reagent/UV). Experiments were performed in batch mode following factorial design L9 (Taguchi orthogonal array design of experiments), considering the three operation variables: temperature (°C), pH, Fenton Reagent (Fe2+/H2O2) + ultraviolet. Reduction of total phenolics (TP) and total organic carbon (TOC) were responsive variables. Among the tested conditions, experiment 7 (temperature, 35°C; pH, 2.5; Fenton reagent, 144 ml H2O2+153 ml Fe2+; UV, 16W) revealed the maximum reduction in TP (98.65%) and TOC (95.73%). Parameters such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), BOD/COD ratio, color intensity and turbidity also showed a significant change in AOP mediated lignin solution than the native alkaline hydrolysate. Conclusion AOP based on Fenton Reagent/UV reaction mechanism showed efficient removal of TP and TOC from sugarcane bagasse alkaline hydrolysate (lignin solution). To the best of our knowledge, this is the first report on statistical optimization of the removal of TP and TOC from sugarcane bagasse alkaline hydrolysate employing Fenton reagent mediated AOP process.