4 resultados para process dynamics
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Electrospinning has become a widely implemented technique for the generation of nonwoven mats that are useful in tissue engineering and filter applications. The overriding factor that has contributed to the popularity of this method is the ease with which fibers with submicron diameters can be produced. Fibers on that size scale are comparable to protein filaments that are observed in the extracellular matrix. The apparatus and procedures for conducting electrospinning experiments are ostensibly simple. While it is rarely reported in the literature on this topic, any experience with this method of fiber spinning reveals substantial ambiguities in how the process can be controlled to generate reproducible results. The simplicity of the procedure belies the complexity of the physical processes that determine the electrospinning process dynamics. In this article, three process domains and the physical domain of charge interaction are identified as important in electrospinning: (a) creation of charge carriers, (b) charge transport, (c) residual charge. The initial event that enables electrospinning is the generation of region of excess charge in the fluid that is to be electrospun. The electrostatic forces that develop on this region of charged fluid in the presence of a high potential result in the ejection of a fluid jet that solidifies into the resulting fiber. The transport of charge from the charge solution to the grounded collection device produces some of the current which is observed. That transport can occur by the fluid jet and through the atmosphere surrounding the electrospinning apparatus. Charges that are created in the fluid that are not dissipated remain in the solidified fiber as residual charges. The physics of each of these domains in the electrospinning process is summarized in terms of the current understanding, and possible sources of ambiguity in the implementation of this technique are indicated. Directions for future research to further articulate the behavior of the electrospinning process are suggested. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3682464]
Resumo:
We investigate the interface dynamics of the two-dimensional stochastic Ising model in an external field under helicoidal boundary conditions. At sufficiently low temperatures and fields, the dynamics of the interface is described by an exactly solvable high-spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero range process. Generally, the critical dynamics of the interface fluctuations is in the Kardar-Parisi-Zhang universality class of critical behavior. We remark that a whole family of RSOS interface models similar to the Ising interface model investigated here can be described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The objective of this experiment was to evaluate tiller population density and the dynamics of the tillering process in marandu palisade grass subjected to strategies of rotational stocking management and nitrogen fertilization. Treatments corresponded to combinations between two targets of pre-grazing conditions (sward surface height of 25 and 35 cm) and two rates of nitrogen application (50 and 200 kg ha-1 year-1), and were allocated to experimental units according to a 2 x 2 factorial arrangement in a randomised complete block design, with four replications. The following response variables were studied: initial (TPDi), intermediate (TPDm) and final (TPDf) tiller population density as well as the rates of tiller appearance (TAR) and death (TDR) and the tiller population stability index (SI). TPDi was similar to all treatments, with differences in tiller population density becoming more pronounced as the experiment progressed, resulting in larger TPDf on swards managed at 25 cm pre-grazing height. Tiller death was larger on swards managed at 35 cm, with differences in tiller appearance being recorded only from February 2010 onwards. Stability of tiller population was higher on swards managed at 25 cm pre-grazing height. Overall, there was no effect of nitrogen on the studied variables, and the most adequate grazing strategy corresponded to the pre-grazing height of 25 cm, regardless of the nitrogen application rate used.
Resumo:
We present a one-dimensional nonlocal hopping model with exclusion on a ring. The model is related to the Raise and Peel growth model. A nonnegative parameter u controls the ratio of the local backwards and nonlocal forwards hopping rates. The phase diagram, and consequently the values of the current, depend on u and the density of particles. In the special case of half-lling and u = 1 the system is conformal invariant and an exact value of the current for any size L of the system is conjectured and checked for large lattice sizes in Monte Carlo simulations. For u > 1 the current has a non-analytic dependence on the density when the latter approaches the half-lling value.