3 resultados para prion

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Santos C.R., Mori E., Leao D.A. & Maiorka P.C. 2012. [Genotyping of polymorphisms in the prnp gene in Santa Ines sheep in the State of Sao Paulo, Brazil.] Genotipagem de polimorfismos no gene prnp em ovinos Santa Ines no Estado de Sao Paulo. Pesquisa Veterinaria Brasileira 32(3):221-226. Laboratorio de Neuropatologia Experimental e Comparada, Departamento de Patologia, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitaria, Sao Paulo, SP 05508-270, Brazil. E-mail: caio-patologia@usp.br Enzootic paraplexia or scrapie is a fatal neurodegenerative disease affecting mainly sheep and rarely goats. The disease is influenced by polymorphisms at codons 136, 154 and 171 of prnp gene that encodes the prion protein. The animals may be susceptible or resistant to the development of the disease according to the allelic sequences observed in these codons. In Brazil there were only cases of scrapie in imported animals, therefore the country is considered free of the disease. This study performed the genotyping of different polymorphisms associated to the development of scrapie. Then, based on these findings the animals were categorized in resistant and susceptible. A total of 118 samples were sequenced from the Santa Ines sheep raised on properties located in the State of Sao Paulo. From these samples, 6 alleles and 11 genotypes were identified (ARQ / ARQ, ARR / ARQ, ARQ / AHQ, ARQ / VRQ, AHQ / AHQ, ARR / ARR, ARR / AHQ, VRQ / VRQ, ARQ / TRQ, TRR / TRR, TRQ / TRQ), the genotype ARQ / ARQ presented a frequency of 56.7%. It was also detected the presence of tyrosine at codon 136, which may be considered a rare observation, since there is no report regarding Santa Ines breeding presenting this polymorphism. These results showed the great genetic variability in Santa Ines in Sao Paulo and only 1,69% of the genotypes observed are extremely resistant to scrapie. These data demonstrate that the Santa Ines sheep can be considered potentially susceptible to scrapie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrPC). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20–50, 100–200, and 300–400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrPC. STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrPC-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1–PrPC signaling