3 resultados para prenatal development

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contents Among the modifications that occur during the neonatal period, pulmonary development is the most critical. The neonate's lungs must be able to perform adequate gas exchange, which was previously accomplished by the placenta. Neonatal respiratory distress syndrome is defined as insufficient surfactant production or pulmonary structural immaturity and is specifically relevant to preterm newborns. Prenatal maternal betamethasone treatment of bitches at 55days of gestation leads to structural changes in the neonatal lung parenchyma and consequently an improvement in the preterm neonatal respiratory condition, but not to an increase in pulmonary surfactant production. Parturition represents an important challenge to neonatal adaptation, as the uterine and abdominal contractions during labour provoke intermittent hypoxia. Immediately after birth, puppies present venous mixed acidosis (low blood pH and high dioxide carbon saturation) and low but satisfactory Apgar scores. Thus, the combination of physiological hypoxia during birth and the initial effort of filling the pulmonary alveoli with oxygen results in anaerobiosis. As a neonatal adaptation follow-up, the Apgar analysis indicates a tachypnoea response after 1h of life, which leads to a shift in the blood acidbase status to metabolic acidosis. One hour is sufficient for canine neonates to achieve an ideal Apgar score; however, a haemogasometric imbalance persists. Dystocia promotes a long-lasting bradycardia effect, slows down Apgar score progression and aggravates metabolic acidosis and stress. The latest data reinforce the need to accurately intervene during canine parturition and offer adequate medical treatment to puppies that underwent a pathological labour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Preconception allergen immunization prevents neonatal allergen sensitization in mice by a complex interaction between regulatory cells/factors and antibodies. The present study assessed the influence of maternal immunization with ovalbumin (OVA) on the immune response of 3 day-old and 3 week-old offspring immunized or non-immunized with OVA and evaluated the effect of IgG treatment during fetal development or neonatal period. Results Maternal immunization with OVA showed increased levels of FcγRIIb expression in splenic B cells of neonates, which were maintained for up to 3 weeks and not affected by additional postnatal OVA immunization. Maternal immunization also exerted a down-modulatory effect on both IL-4 and IFN-γ-secreting T cells and IL-4 and IL-12- secreting B cells. Furthermore, immunized neonates from immunized mothers showed a marked inhibition of antigen-specifc IgE Ab production and lowered Th2/Th1 cytokine levels, whereas displaying enhanced FcγRIIb expression on B cells. These offspring also showed reduced antigen-specific proliferative response and lowered B cell responsiveness. Moreover, in vitro evaluation revealed an impairment of B cell activation upon engagement of B cell antigen receptor by IgG from OVA-immunized mice. Finally, in vivo IgG transference during pregnancy or breastfeeding revealed that maternal Ab transference was able to increase regulatory cytokines, such as IL-10, in the prenatal stage; yet only the postnatal treatment prevented neonatal sensitization. None of the IgG treatments induced immunological changes in the offspring, as it was observed for those from OVA-immunized mothers. Conclusion Maternal immunization upregulates the inhibitory FcγRIIb expression on offspring B cells, avoiding skewed Th2 response and development of allergy. These findings contribute to the advancement of prophylactic strategies to prevent allergic diseases in early life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prenatal immune challenge (PIC) in pregnant rodents produces offspring with abnormalities in behavior, histology, and gene expression that are reminiscent of schizophrenia and autism. Based on this, the goal of this article was to review the main contributions of PIC models, especially the one using the viral-mimetic particle polyriboinosinic-polyribocytidylic acid (poly-I:C), to the understanding of the etiology, biological basis and treatment of schizophrenia. This systematic review consisted of a search of available web databases (PubMed, SciELO, LILACS, PsycINFO, and ISI Web of Knowledge) for original studies published in the last 10 years (May 2001 to October 2011) concerning animal models of PIC, focusing on those using poly-I:C. The results showed that the PIC model with poly-I:C is able to mimic the prodrome and both the positive and negative/cognitive dimensions of schizophrenia, depending on the specific gestation time window of the immune challenge. The model resembles the neurobiology and etiology of schizophrenia and has good predictive value. In conclusion, this model is a robust tool for the identification of novel molecular targets during prenatal life, adolescence and adulthood that might contribute to the development of preventive and/or treatment strategies (targeting specific symptoms, i.e., positive or negative/cognitive) for this devastating mental disorder, also presenting biosafety as compared to viral infection models. One limitation of this model is the incapacity to model the full spectrum of immune responses normally induced by viral exposure.