2 resultados para prawn

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry mass (DM) and total ammonia-N (TAN) excretion were determined in embryos, larvae (ZI-ZIX, Z = zoea ), and postlarvae (PL) at 1, 7, and 14 d after metamorphosis (PL1, PL7, and PL14) of Macrobrachium amazonicum. Animals in postmolt-intermolt (A-C) stages were sorted according to their developmental stages, and placed into incubation chambers (similar to 30 mL) for 2 h to quantify TAN excretion. After this period, analyses were carried out using Koroleff`s method for TAN determination. Individual TAN excretion generally increased throughout ontogenetic development and varied from 0.0090 +/- 0.0039 mu g TAN/individual/h in embryo to 1.041 +/- 0.249 mu g TAN/individual/h in PL14. There was no significant difference between embryo-ZIV and ZV-ZIX (P > 0.05), whereas PL1, PL7, and PL14 differed (P < 0.05) from each other. Higher increments in individual ammonia-N excretion were observed between ZIV-ZV, PL1-PL7, and PL7-PL14. Mass-specific excretion rates presented two groups, embryo-ZII (P > 0.05) and ZIII-PL14 (P > 0.05). The lowest value was found in embryo (0.17 +/- 0.07 mu g TAN/mg DM/h) and the maximum values in ZV and PL1 (0.65 +/- 0.25 and 0.64 +/- 0.27 mu g TAN/mg DM/h, respectively). Results indicate that metabolic rate is proportional to the body mass in M. amazonicum, during early life stages. Variations in ammonia excretion during this phase may be associated mainly with body size. Data obtained in the present study may be useful in developing and optimizing rearing techniques of M. amazonicum, such as the proportions between biofilter and rearing tank size, and stocking density in culture tanks or in transport bags.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 (+) and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, . (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP ( (M) = 0.09 +/- A 0.01 mmol L-1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ ( (0.5) = 0.91 +/- A 0.04 mmol L-1) in decapodid III than in other stages; NH4 (+) had no modulatory effect. The affinity for Na+ ( (0.5) = 13.2 +/- A 0.6 mmol L-1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 (+) obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval The NH4 (+)-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.