9 resultados para power system simulation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This work presents the application of Linear Matrix Inequalities to the robust and optimal adjustment of Power System Stabilizers with pre-defined structure. Results of some tests show that gain and zeros adjustments are sufficient to guarantee robust stability and performance with respect to various operating points. Making use of the flexible structure of LMI's, we propose an algorithm that minimizes the norm of the controllers gain matrix while it guarantees the damping factor specified for the closed loop system, always using a controller with flexible structure. The technique used here is the pole placement, whose objective is to place the poles of the closed loop system in a specific region of the complex plane. Results of tests with a nine-machine system are presented and discussed, in order to validate the algorithm proposed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a new algebraic-graph method for identification of islanding in power system grids is proposed. The proposed method identifies all the possible cases of islanding, due to the loss of a equipment, by means of a factorization of the bus-branch incidence matrix. The main features of this new method include: (i) simple implementation, (ii) high speed, (iii) real-time adaptability, (iv) identification of all islanding cases and (v) identification of the buses that compose each island in case of island formation. The method was successfully tested on large-scale systems such as the reduced south Brazilian system (45 buses/72 branches) and the south-southeast Brazilian system (810 buses/1340 branches). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.
Resumo:
This paper proposes an evolutionary computing strategy to solve the problem of fault indicator (FI) placement in primary distribution feeders. More specifically, a genetic algorithm (GA) is employed to search for an efficient configuration of FIs, located at the best positions on the main feeder of a real-life distribution system. Thus, the problem is modeled as one of optimization, aimed at improving the distribution reliability indices, while, at the same time, finding the least expensive solution. Based on actual data, the results confirm the efficiency of the GA approach to the FI placement problem.
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
A power transformer needs continuous monitoring and fast protection as it is a very expensive piece of equipment and an essential element in an electrical power system. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can mislead the conventional protection affecting the power system stability negatively. This study proposes the development of a new algorithm to improve the protection performance by using fuzzy logic, artificial neural networks and genetic algorithms. An electrical power system was modelled using Alternative Transients Program software to obtain the operational conditions and fault situations needed to test the algorithm developed, as well as a commercial differential relay. Results show improved reliability, as well as a fast response of the proposed technique when compared with conventional ones.
Resumo:
In this paper, a novel method for power quality signal decomposition is proposed based on Independent Component Analysis (ICA). This method aims to decompose the power system signal (voltage or current) into components that can provide more specific information about the different disturbances which are occurring simultaneously during a multiple disturbance situation. The ICA is originally a multichannel technique. However, the method proposes its use to blindly separate out disturbances existing in a single measured signal (single channel). Therefore, a preprocessing step for the ICA is proposed using a filter bank. The proposed method was applied to synthetic data, simulated data, as well as actual power system signals, showing a very good performance. A comparison with the decomposition provided by the Discrete Wavelet Transform shows that the proposed method presented better decoupling for the analyzed data. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The complexity of power systems has increased in recent years due to the operation of existing transmission lines closer to their limits, using flexible AC transmission system (FACTS) devices, and also due to the increased penetration of new types of generators that have more intermittent characteristics and lower inertial response, such as wind generators. This changing nature of a power system has considerable effect on its dynamic behaviors resulting in power swings, dynamic interactions between different power system devices, and less synchronized coupling. This paper presents some analyses of this changing nature of power systems and their dynamic behaviors to identify critical issues that limit the large-scale integration of wind generators and FACTS devices. In addition, this paper addresses some general concerns toward high compensations in different grid topologies. The studies in this paper are conducted on the New England and New York power system model under both small and large disturbances. From the analyses, it can be concluded that high compensation can reduce the security limits under certain operating conditions, and the modes related to operating slip and shaft stiffness are critical as they may limit the large-scale integration of wind generation.
Resumo:
The main objective of this work is to present an efficient method for phasor estimation based on a compact Genetic Algorithm (cGA) implemented in Field Programmable Gate Array (FPGA). To validate the proposed method, an Electrical Power System (EPS) simulated by the Alternative Transients Program (ATP) provides data to be used by the cGA. This data is as close as possible to the actual data provided by the EPS. Real life situations such as islanding, sudden load increase and permanent faults were considered. The implementation aims to take advantage of the inherent parallelism in Genetic Algorithms in a compact and optimized way, making them an attractive option for practical applications in real-time estimations concerning Phasor Measurement Units (PMUs).