4 resultados para potential recovery
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Growth potential (delta) is defined as the difference between the population of a microorganism at the end of shelf-life of specific food and its initial population. The determination of 6 of Salmonella and Listeria monocytogenes in RTE vegetables can be very useful to determine likely threats to food safety. However, little is known on the behavior of these microorganisms in several RTE vegetables. Therefore, the aim of this study was to determine the delta of both pathogens in nine different types of RTE vegetables (escarole, collard green, spinach, watercress, arugula, grated carrot, green salad, and mix for yakisoba) stored at refrigeration (7 degrees C) and abuse temperature (15 degrees C). The population of aerobic microorganisms and lactic acid bacteria, including those showing antimicrobial activity has been also determined. Results indicated that L monocytogenes was able to grow (delta >= 0.5 log(10)) in more storage conditions and vegetables than Salmonella. Both microorganisms were inhibited in carrots, although a more pronounced effect has been observed against L monocytogenes. The highest 5 values were obtained when the RTE vegetables were stored 15 degrees C/6 days in collard greens (delta=3.3) and arugula (delta=3.2) (L monocytogenes) and arugula (delta=4.1) and escarole (delta=2.8) (Salmonella). In most vegetables and storage conditions studied, the counts of total aerobic microorganisms raised significantly independent of the temperature of storage (p<0.05). Counts of lactic acid bacteria were higher in vegetables partially or fully stored at abuse temperature with recovery of isolates showing antimicrobial activity. In conclusion, the results of this study show that Salmonella and L monocytogenes may grow and reach high populations in RTE vegetables depending on storage conditions and the definition of effective intervention strategies are needed to control their growth in these products. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: The controversial effects promoted by cardiac resynchronization therapy (CRT) on the ventricular repolarization (VR) have motivated VR evaluation by body surface potential mapping (BSPM) in CRT patients. Methods: Fifty-two CRT patients, mean age 58.8 +/- 12.3 years, 31 male, LVEF 27.5 +/- 9.2, NYHA III-IV heart failure with QRS181.5 +/- 14.2 ms, underwent 87-lead BSPM in sinus rhythm (BASELINE) and biventricular pacing (BIV). Measurements of mean and corrected QT intervals and dispersion, mean and corrected T peak end intervals and their dispersion, and JT intervals characterized global and regional (RV, Intermediate, and LV regions) ventricular repolarization response. Results: Global QTm (P < 0.001) and QTcm (P < 0.05) were decreased in BIV; QTm was similar across regions in both modes (P = ns); QTcm values were lower in RV/LV than in Intermediate region in BASELINE and BIV (P < 0.001); only RV/Septum showed a significant difference (P < 0.01) in the BIV mode. QTD values both of BASELINE (P < 0.01) and BIV (P < 0.001) were greater in the Intermediate than in the LV region. CRT effect significantly reduced global/regional QTm and QTcm values. QTD was globally decreased in RV/LV (Intermediate: P = ns). BIV mode significantly reduced global T peak end mean and corrected intervals and their dispersion. JT values were not significant. Conclusions: Ventricular repolarization parameters QTm, QTcm, and QTD global/regional values, as assessed by BSPM, were reduced in patients under CRT with severe HF and LBBB. Greater recovery impairment in the Intermediate region was detected by the smaller variation of its dispersion.
Resumo:
This study evaluates the potential for using different effluents for simultaneous H-2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H-2 was produced from parboiled rice wastewater (23.9 mL g(-1) chemical oxygen demand [COD]) and vinasse (20.8 mL g(-1) COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3 mL g(-1) COD), followed by parboiled rice wastewater (115.5 mL g(-1) COD) and glycerol (180.1 mL g(-1) COD). The maximum amount of CH4 was observed for vinasse (255.4 mL g(-1) COD). The total energy recovery from vinasse (10.4 kJ g(-1) COD) corresponded to the maximum COD reduction (74.7 %), followed by glycerol (70.38 %, 7.20 kJ g(-1) COD), parboiled rice wastewater (63.91 %, 4.92 kJ g(-1) COD), and sewage (51.11 %, 1.85 kJ g(-1) COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H-2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H-2 and CH4.
Resumo:
Cancer cachexia causes metabolic alterations with a marked effect on hepatic lipid metabolism. l-Carnitine modulates lipid metabolism and its supplementation has been proposed as a therapeutic strategy in many diseases. In the present study, the effects of l-carnitine supplementation on gene expression and on liver lipid metabolism-related proteins was investigated in cachectic tumour-bearing rats. Wistar rats were assigned to receive 1 g/kg of l-carnitine or saline. After 14 days, supplemented and control animals were assigned to a control (N), control supplemented with l-carnitine (CN), tumour-bearing Walker 256 carcinosarcoma (TB) and tumour-bearing supplemented with l-carnitine (CTB) group. The mRNA expression of carnitine palmitoyltransferase I and II (CPT I and II), microsomal triglyceride transfer protein (MTP), liver fatty acid-binding protein (L-FABP), fatty acid translocase (FAT/CD36), peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and organic cation transporter 2 (OCTN2) was assessed, and the maximal activity of CPT I and II in the liver measured, along with plasma and liver triacylglycerol content. The gene expression of MTP, and CPT I catalytic activity were reduced in TB, who also showed increased liver (150%) and plasma (3.3-fold) triacylglycerol content. l-Carnitine supplementation was able to restore these parameters back to control values (p < 0.05). These data show that l-carnitine preserves hepatic lipid metabolism in tumour-bearing animals, suggesting its supplementation to be of potential interest in cachexia.