6 resultados para potential fields
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
After completion of the LHC8 run in 2012, the plan is to upgrade the LHC for operation close to its design energy root s = 14 TeV, with a goal of collecting hundreds of fb(-1) of integrated luminosity. The time is propitious to begin thinking of what is gained by even further LHC upgrades. In this report, we compute an LHC14 reach for supersymmetry in the mSUGRA/CMSSM model with an anticipated high luminosity upgrade. We find that LHC14 with 300 (3000) fb(-1) has a reach for supersymmetry via gluino/squark searches of m((g) over tilde) similar to 3.2 TeV (3.6 TeV) for m((q) over tilde) similar to m((g) over tilde), and a reach of m((g) over tilde) similar to 1.8 TeV (2.3 TeV) for m((q) over tilde) >> m((g) over tilde). In the case where m((q) over tilde) >> m((g) over tilde), then the LHC14 reach for chargino-neutralino production with decay into the Wh + 6 is not an element of(T) final state reaches to m((g) over tilde) similar to 2.6 TeV for 3000 fb(-1).
Resumo:
The construction of the Agua Negra tunnels that will link Argentina and Chile under the Andes, the world's longest mountain range, opens the possibility of building the first deep underground laboratory in the Southern Hemisphere. This laboratory has the acronym ANDES (Agua Negra Deep Experiment Site) and its overburden could be as large as similar to 1.7 km of rock, or 4500 mwe, providing an excellent low background environment to study physics of rare events like the ones induced by neutrinos and/or dark matter. In this paper we investigate the physics potential of a few kiloton size liquid scintillator detector, which could be constructed in the ANDES laboratory as one of its possible scientific programs. In particular, we evaluate the impact of such a detector for the studies of geoneutrinos and Galactic supernova neutrinos, assuming a fiducial volume of 3 kilotons as a reference size. We emphasize the complementary roles of such a detector to the ones of the Northern Hemisphere neutrino facilities, given the advantages of its geographical location.
Resumo:
Nitrogen management has been intensively studied on several crops and recently associated with variable rate on-the-go application based on crop sensors. Such studies are scarce for sugarcane and as a biofuel crop the energy input matters, seeking high positive energy balance production and low carbon emission on the whole production system. This article presents the procedure and shows the first results obtained using a nitrogen and biomass sensor (N-Sensor (TM) ALS, Yara International ASA) to indicate the nitrogen application demands of commercial sugarcane fields. Eight commercial fields from one sugar mill in the state of Sao Paulo, Brazil, varying from 15 to 25 ha in size, were monitored. Conditions varied from sandy to heavy soils and the previous harvesting occurred in May and October 2009, including first, second, and third ratoon stages. Each field was scanned with the sensor three times during the season (at 0.2, 0.4, and 0.6 m stem height), followed by tissue sampling for biomass and nitrogen uptake at ten spots inside the area, guided by the different values shown by the sensor. The results showed a high correlation between sensor values and sugarcane biomass and nitrogen uptake, thereby supporting the potential use of this technology to develop algorithms to manage variable rate application of nitrogen for sugarcane.
Resumo:
We study the one-loop effective potential for some Horava-Lifshitz-like theories.
Resumo:
We extend our earlier results delineating the supersymmetry reach of the CERN Large Hadron Collider operating at a center-of-mass energy root s = 7 TeV to integrated luminosities in the range 5-30 fb(-1). Our results are presented within the paradigm minimal supergravity model or constrained minimal supersymmetric standard model. Using a six-dimensional grid of cuts for the optimization of signal to background ratio-including missing E-T-we find for m((g) over tilde) similar to m((q) over tilde) an LHC 5 sigma supersymmetry discovery reach of m((g) over tilde) similar to 1:3, 1.4, 1.5, and 1.6 TeV for 5, 10, 20, and 30 fb(-1), respectively. For m((q) over tilde) >> m((g) over tilde), the corresponding reach is instead m((g) over tilde) similar to 0: 8, 0.9, 1.0, and 1.05 TeV, for the same integrated luminosities.
Resumo:
Background: Magnetic hyperthermia is currently a clinical therapy approved in the European Union for treatment of tumor cells, and uses magnetic nanoparticles (MNPs) under time-varying magnetic fields (TVMFs). The same basic principle seems promising against trypanosomatids causing Chagas disease and sleeping sickness, given that the therapeutic drugs available have severe side effects and that there are drug-resistant strains. However, no applications of this strategy against protozoan-induced diseases have been reported so far. In the present study, Crithidia fasciculata, a widely used model for therapeutic strategies against pathogenic trypanosomatids, was targeted with Fe3O4 MNPs in order to provoke cell death remotely using TVMFs. Methods: Iron oxide MNPs with average diameters of approximately 30 nm were synthesized by precipitation of FeSO4 in basic medium. The MNPs were added to C. fasciculata choanomastigotes in the exponential phase and incubated overnight, removing excess MNPs using a DEAE-cellulose resin column. The amount of MNPs uploaded per cell was determined by magnetic measurement. The cells bearing MNPs were submitted to TVMFs using a homemade AC field applicator (f = 249 kHz, H = 13 kA/m), and the temperature variation during the experiments was measured. Scanning electron microscopy was used to assess morphological changes after the TVMF experiments. Cell viability was analyzed using an MTT colorimetric assay and flow cytometry. Results: MNPs were incorporated into the cells, with no noticeable cytotoxicity. When a TVMF was applied to cells bearing MNPs, massive cell death was induced via a nonapoptotic mechanism. No effects were observed by applying TVMF to control cells not loaded with MNPs. No macroscopic rise in temperature was observed in the extracellular medium during the experiments. Conclusion: As a proof of principle, these data indicate that intracellular hyperthermia is a suitable technology to induce death of protozoan parasites bearing MNPs. These findings expand the possibilities for new therapeutic strategies combating parasitic infection.