8 resultados para polymer nanoparticles

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This manuscript reports on the fabrication of plasmonic substrates using cathodic arc plasma ion implantation, in addition to their performance as SERS substrates. The technique allows for the incorporation of a wide layer of metallic nanoparticles into a polymer matrix, such as PMMA. The ability to pattern different structures using the PMMA matrix is one of the main advantages of the fabrication method. This opens up new possibilities for obtaining tailored substrates with enhanced performance for SERS and other surface-enhanced spectroscopies, as well as for exploring the basic physics of patterned metal nanostructures. The architecture of the SERS-active substrate was varied using three adsorption strategies for incorporating a laser dye (rhodamine): alongside the nanoparticles into the polymer matrix, during the polymer cure and within nanoholes lithographed on the polymer. As a proof-of-concept, we obtained the SERS spectra of rhodamine for the three types of substrates. The hypothesis of incorporation of rhodamine molecules into the polymer matrix during the cathodic arc plasma ion implantation was supported by FDTD (Finite-Difference Time-Domain) simulations. In the case of arrays of nanoholes, rhodamine molecules could be adsorbed directly on the gold surface, then yielding a well-resolved SERS spectrum for a small amount of analyte owing to the short-range interactions and the large longitudinal field component inside the nanoholes. The results shown here demonstrate that the approach based on ion implantation can be adapted to produce reproducible tailored substrates for SERS and other surface-enhanced spectroscopies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymeric nanoparticles (PLGA) have been developed for the encapsulation and controlled release of quercetin and catechin. Nanoparticles were fabricated using a solvent displacementmethod. Physicochemical properties were measured by light scattering, scanning electron microscopy and zeta-potential, X-ray diffraction, infrared spectroscopy and differential scanning calorimetry. Encapsulation efficiency and in vitro release profiles were obtained from differential pulse voltammetry experiments. Antioxidant properties of free and encapsulated flavonoids were determined by TBARS, fluorescence spectroscopy and standard chelating activity methods. Relatively small (d approximate to 400 nm) polymeric nanoparticles were obtained containing quercetin or catechin in a non-crystalline form (EE approximate to 79%) and the main interactions between the polymer and each flavonoid were found to consist of hydrogen bonds. In vitro release profiles were pH-dependant, the more acidic pH, the faster release of each flavonoid from the polymeric nanoparticles. The inhibition of the action of free radicals and chelating properties, were also enhanced when quercetin and catechin were encapsulated within PLGA nanoparticles. The information obtained from this study will facilitate the design and fabrication of polymeric nanoparticles as possible oral delivery systems for encapsulation, protection and controlled release of flavonoids aimed to prevent oxidative stress in human body or food products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposites obtained from the polymerization of aniline in the presence of nanoparticles of magnetite (Fe3O4) have been investigated in previous studies. However, there is a lack of information available on the redox interaction of the nanoparticle/conductive polymer couple and the stability that such an oxide can give to the organic phase. In this work, Fe3O4 nanoparticles were incorporated into a PANi matrix by the in-situ oxidative polymerization method. A combination of X-ray diffraction, Mossbauer spectroscopy, transmission electronic microscopy, UV-visible spectroscopy as well as the cyclic voltammetric and Raman spectroscopy techniques, was used to understand the redox effect that the partially oxidized nanoparticles produced on the polymer. It was found that magnetite greatly stabilised PANi, mainly by enhancing the Leucoemeraldine/Emeraldine redox couple and also by reducing the bipolaronic state. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochromic behavior of iron complexes derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) and a hexacyanoferrate species in polyelectrolytic multilayer adsorbed films is described for the first time. This complex macromolecule was deposited onto indium-tin oxide (ITO) substrates via self-assembly, and the morphology of the modified electrodes was studied using atomic force microscopy (AFM), which indicated that the hybrid film containing the polyelectrolyte multilayer and the iron complex was highly homogeneous and was approximately 50 nm thick. The modified electrodes exhibited excellent electrochromic behavior with both intense and persistent coloration as well as a chromatic contrast of approximately 70%. In addition, this system achieved high electrochromic efficiency (over 70 cm(2) C-1 at 630 nm) and a response time that could be measured in milliseconds. The electrode was cycled more than 10(3) times, indicating excellent stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes. (C) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the preparation of platinum nanoparticles (PtNPs) using the 3-n-propylpyridinium silsesquioxane chloride (SiPy+Cl-) as a nanoreactor and stabilizer. The formation of PtNPs was monitored by UV-Vis spectroscopy by measuring the decrease in the intensity of the band at 375 nm, which is attributed to the electronic absorption of PtCl62- ions. TEM images of Pt-SiPy+Cl- nanohybrid indicated an average size of 3-40 nm for PtNPs. The Pt-SiPy+Cl- was used as a polycation in the preparation of layer-by-layer films (LbL) on a glass substrate coated with fluorine-doped tin oxide (FTO) alternating with the polyanion poly(vinyl sulfonic acid) (PVS). The films were electrochemically tested in sulfuric acid to confirm the deposition of Pt-SiPy+Cl- onto the LbL films, observing the adsorption and desorption of hydrogen (E-pa = 0.1 V) and by the redox process of formation for PtO with E-pa = 1.3 V and E-pc = 0.65 V. FTIR and Raman spectra confirmed the presence of the PVS and Pt-SiPy+Cl- in the LbL films. A linear increase in the absorbance in the UV-Vis spectra of the Pt-SiPy+Cl- at 258 nm (pi -> pi* transition of the pyridine groups) with a number of Pt-SiPy+Cl-/PVS or PVS/SiPy+Cl- bilayers (R = 0.992) was observed. These LbL films were tested for the determination of dopamine (DA) in the presence of ascorbic acid (AA) with a detection limit (DL) on the order of 2.6 x 10(-6) mol L-1 and a quantification limit (QL) of 8.6 x 10(-6) mol L-1. The films exhibited a good repeatability and reproducibility, providing a potential difference of 550 mV for the oxidation of DA with AA interferent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The colloidal stability of poly(ethylene glycol)-decorated poly(methyl methacrylate), PMMA/Tween-20, particles was investigated by means of phase separation measurements, in the presence of sodium fluoride (NaF), sodium chloride, sodium bromide, sodium nitrate, or sodium thiocyanate (NaSCN) at 1.0 mol L-1. Following Hofmeister's series, the dispersions of PMMA/Tween-20 destabilized faster in the presence of NaF than with NaSCN. After the phase separation, the systems were homogenized and except for the dispersions in NaF, re-dispersed particles took longer to destabilize, indicating that anions adsorbed on the particles, creating a new surface. Except for F- ions, the adsorption of anions on the polar outmost shell was evidenced by means of tensiometry and small-angle X-ray scattering measurements. Fluoride ions induced the dehydration of the polar shell, without affecting the polar shell electron density, and the formation of very large aggregates. A model was proposed to explain the colloidal behavior in the presence of Hofmeister ions.