18 resultados para poly (propylene glycol)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duarte MAH, Alves de Aguiar K, Zeferino MA, Vivan RR, Ordinola-Zapata R, Tanomaru-Filho M, Weckwerth PH, Kuga MC. Evaluation of the propylene glycol association on some physical and chemical properties of mineral trioxide aggregate. International Endodontic Journal, 45, 565570, 2012. Abstract Aim To evaluate the influence of propylene glycol (PG) on the flowability, setting time, pH and calcium ion release of mineral trioxide aggregate (MTA). Methodology Mineral trioxide aggregate was mixed with different proportions of PG, as follows: group 1: MTA + 100% distilled water (DW); group 2: MTA + 80% DW and 20% PG; group 3: MTA + 50% DW and 50% PG; group 4: MTA + 20% DW and 80% PG; group 5: MTA + 100% PG. The ANSI/ADA No. 57 was followed for evaluating the flowability and the setting time was measured by using ASTM C266-08. For pH and calcium release analyses, 50 acrylic teeth with root-end cavities were filled with the materials (n = 10) and individually immersed in flasks containing 10 mL deionized water. After 3 h, 24 h, 72 h and 168 h, teeth were placed in new flasks and the water in which each specimen was immersed had its pH determined by a pH metre and the calcium release measured by an atomic absorption spectrophotometer with a calcium-specific hollow cathode lamp. Data were analysed by using one-way anova test for global comparison and by using Tukeys test for individual comparisons. Results The highest value of flowability was observed with MTA + 20% DW and 80% PG and the lowest values were found with MTA + 100% DW. They were significantly different compared to the other groups (P < 0.05). The presence of PG did not affect the pH and calcium release. The MTA + 100% PG favoured the highest (P < 0.05) pH and calcium release after 3 h. Increasing the PG proportion interfered (P < 0.05) with the setting time; when used at the volume of 100% setting did not occur. Conclusion The addition of PG to MTA-Angelus increased its setting time, improved flowability and increased the pH and calcium ion release during the initial post-mixing periods. The ratio of 80% DW 20% PG is recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purification of collagenase produced by Penicillium aurantiogriseum URM4622 was carried using a PEG/phosphate aqueous two-phase system (ATPS). A 2(3)-full experimental design was used to investigate the influence of PEG molar mass, PEG concentration and phosphate concentration on the selected responses, namely partition coefficient, activity yield and purification factor. The ATPS was composed of PEG (molar mass of 550, 1500 and 4000 g/mol) at concentrations of 15.0, 17.5 and 20.0% (w/w) and phosphate at concentrations of 12.5, 15.0 and 17.5% (w/w). The best results of one-step extraction of collagenase from the fermentation broth (partition coefficient of 1.01, activity yield of 242% and purification factor of 23.5) were obtained at pH 6.0 using 20.0% (w/w) PEG 550 and 17.5% (w/w) phosphate. The results of this preliminary study demonstrate that the selected ATPS is satisfactorily selective for the extraction of such a collagenase. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The colloidal stability of poly(ethylene glycol)-decorated poly(methyl methacrylate), PMMA/Tween-20, particles was investigated by means of phase separation measurements, in the presence of sodium fluoride (NaF), sodium chloride, sodium bromide, sodium nitrate, or sodium thiocyanate (NaSCN) at 1.0 mol L-1. Following Hofmeister's series, the dispersions of PMMA/Tween-20 destabilized faster in the presence of NaF than with NaSCN. After the phase separation, the systems were homogenized and except for the dispersions in NaF, re-dispersed particles took longer to destabilize, indicating that anions adsorbed on the particles, creating a new surface. Except for F- ions, the adsorption of anions on the polar outmost shell was evidenced by means of tensiometry and small-angle X-ray scattering measurements. Fluoride ions induced the dehydration of the polar shell, without affecting the polar shell electron density, and the formation of very large aggregates. A model was proposed to explain the colloidal behavior in the presence of Hofmeister ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triblock copolymers are made of monomer segments, being the central part usually hydrophobic and the outer parts hydrophilic. By varying sizes, molecular weights and monomer types of the segments one obtains different final molecules, with different physico-chemical properties, which are directly related to the performance of the final product. Looking for new products to be used, among other possibilities, in biological applications, a new polymer (Figure 1) was synthesized by the Dow Chemical and studied by Size Exclusion Chromatography, Fourier Transformed Infrared Spectrometry, Small-angle X-ray Scattering (SAXS) and its cloud point was determined by measuring light transmittance. The studies showed low molecular polydispersivety, but different polarities in the macromolecules fractions. Due to the low solubility of Diol in water, a mixture of water/butyl diglycol was used as solvent. An extensive analysis by SAXS was performed for concentrations from 50 wt% to 80 wt% of Diol in solution. Small concentrations showed very low signal to noise ratio, making it impossible to be analysed. The scattering intensity including the form factor of polydisperse non-homogeneous spheres, and the structure factor of interacting hard spheres was fitted to the curves. As the polymer concentration is high, the fitting of form factors of direct and reverse micelles were compared. The results for direct micelles were better up to 80 wt%, whereas at 90 wt% and 95 wt% the curves were better fitted by reverse micelles. It might seem odd that direct micelles are present up to such high concentrations, but it might have been caused by the presence of butyl diglycol, which increases the solubility of Diol in water. The inner and outer radius of the micelles, electron density distribution, and interaction radius of the micelles were obtained. The polydispersivety increases with Diol concentration. Besides, the interaction radius increases with solvent concentration, even when reversed micelles are present. In the last case, accompanied by an increase of inner radius (water content), as there are fewer Diol molecules to involve the water nuclei, which become larger, further apart, and in less number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, Cross-Polarization Magic-angle Spinning CP/MAS, 2D Exchange, Centerband-Only Detection of Exchange (CODEX), and Separated-Local-Field (SLF) NMR experiments were used to study the molecular dynamics of poly(ethylene glycol) (PEG) inside Hectorite/PEG intercalation compounds in both single- and double-layer configurations. The results revealed that the overall amplitude of the motions of the PEG chain in the single-layer configuration is considerably smaller than that observed for the double-layer intercalation compound. This result indicates that the effect of having the polymer chain interacting with both clay platelets is to produce a substantial decrease in the motional amplitudes of those chains. The presence of these dynamically restricted segments might be explained by the presence of anchoring points between the clay platelets and the PEG oxygen atoms, which was induced by the Na+ cations. By comparing the PEG motional amplitudes of the double-layered nanocomposites composed of polymers with different molecular weights, a decrease in the motional amplitude for the smaller PEG chain was observed, which might also be understood using the presence of anchoring points.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Blending polypropylene (PP) with biodegradable poly(3-hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene-g-maleic anhydride) (PPMAH), poly (ethylene-co-methyl acrylate) [P(EMA)], poly(ethylene-co-glycidyl methacrylate) [P(EGMA)], and poly(ethylene-co-methyl acrylate-co-glycidyl methacrylate) [P(EMAGMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(EMAGMA) > P(EMA) > P(EGMA) > PP-MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 3511-3519, 2012

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective To evaluate the action of conjugated equine estrogen, raloxifene and isolated or combined genistein-rich soy extracts on collagen fibers in the bones of oophorectomized rats. Materials and methods Seventy female rats received testosterone propionate (0.1 mu g/g) on the 9th day after birth. At 6 months of age, the rats were administered the vehicle (propylene glycol, 0.5 ml/day), and ten of the rats were randomly chosen to comprise the non-oophorectomized control group (GI). The other 60 rats were ovariectomized and randomized into six groups of ten as follows: GII, vehicle; GIII, conjugated equine estrogen (CEE), 50 mu g/kg/day; GIV, raloxifene (RAL), 0.75 mg/kg/day; GV, genistein-rich soy extract (GSE), 300 mg/kg/day; GVI, CEE + GSE, 50 mu g/kg/day + 300 mg/kg/day; and GVII, CEE + RAL, 50 mu g/kg/day + 0.75 mg/kg/day. Three months after surgery, the drugs were administered for 60 consecutive days. All rats were euthanized, and their left tibiae were removed for histological routine. The histological sections were stained with hematoxylin-eosin, and picrosirius for evaluating bone microarchitecture. Types I and II collagen fibers were analyzed by immunofluorescence. Data analysis was carried out with ANOVA and Tukey's test. Results Collagen reduction was significant in the GIII animals when compared to the other groups (p < 0.05). There was no significant difference in the thickness of collagen fibers among the groups. There was a greater quantity of type III collagen in GVI than in the other groups. Conclusion Our data indicate that conjugated equine estrogen improves bone quality because it increases the quantity of type I collagen while reducing the quantity of thin collagen fibers. In addition, the combination of CEE and raloxifene or genistein-rich soy extract is not as efficient as CEE itself to improve bone quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The partitioning of Clavulanic Acid (CA) in a novel inexpensive and stable aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The aqueous two-phase systems are formed by mixing both polymers with a salt (NaCl or Na2SO4) and an aqueous solution of CA. The stability of CA on the presence of both polymers was investigated and it was observed that these polymers do not degrade the biomolecule. The effect of PEG-molecular size, polymer concentrations on the commercial CA partitioning has been studied, at 25 degrees C. The data showed that commercial CA was preferentially partitioned for the PEG-rich phase with a partition coefficient (K-CA) between 1 and 12 in the PEG/NaPA aqueous two phase systems supplemented with NaCl and Na2SO4. The partition to the PEG phase was increased in the systems with high polymer concentrations. Furthermore, Na2SO4 caused higher CA preference for the PEG-phase than NaCl. The systems having a composition with 10 wt.% of PEG4000, 20 wt.% of NaPA8000 and 6 wt.% of Na2SO4 were selected as the optimal ones in terms of recovery of CA from fermented broth of Streptomyces clavuligerus. The partitioning results (K-CA = 9.15 +/- 1.06) are competitive with commercial extraction methods of CA (K-CA = 11.91 +/- 2.08) which emphasizes that the system PEG/NaPA/Na2SO4 can be used as a new process to CA purification/concentration from fermented broth. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The layer-by-layer (LbL) technique combined with field-effect transistor (FET) based sensors has enabled the production of pH-sensitive platforms with potential application in biosensors. A variation of the FET architecture, so called separative extended gate FET (SEGFET) devices, are promise as an alternative to conventional ion sensitive FET (ISFET). SEGFET configuration exhibits the advantage of combining the field-effect concept with organic and inorganic materials directly adsorbed on the extended gate, allowing the test of new pH-sensitive materials in a simple and low cost way. In this communication, poly(propylene imine) dendrimer (PPI) and TiO2 nanoparticles (TiO2-np) were assembled onto gold-covered substrates via layer-by-layer technique to produce a low cost SEGFET pH sensor. The sensor presented good pH sensitivity, ca. 57 mV pH(-1), showing that our strategy has potential advantages to fabricate low cost pH-sensing membranes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: The purpose of this study was to analyze the influence of ultrasonic activation of calcium hydroxide (CH) pastes on pH and calcium release in simulated external root resorptions. Methods: Forty-six bovine incisors had their canals cleaned and instrumented, and defects were created in the external middle third of the roots, which were then used for the study. The teeth were externally made impermeable, except for the defected area, and divided into the following 4 groups containing 10 samples each according to the CH paste and the use or not of the ultrasonic activation: group 1: propylene glycol without ultrasonic activation, group 2: distilled water without ultrasonic activation, group 3: propylene glycol with ultrasonic activation, and group 4: distilled water with ultrasonic activation. After filling the canals with the paste, the teeth were restored and individually immersed into flasks with ultrapure water. The samples were placed into other flasks after 7, 15, and 30 days so that the water pH level could be measured by means of a pH meter. Calcium release was measured by means of an atomic absorption spectrophotometer. Six teeth were used as controls. The results were statistically compared using the Kruskal-Wallis and Mann-Whitney U tests (P < .05). Results: For all periods analyzed, the pH level was found to be higher when the CH paste was activated with ultrasound. Calcium release was significantly greater (P < .05) using ultrasonic activation after 7 and 30 days. Conclusions: The ultrasonic activation of CH pastes favored a higher pH level and calcium release in simulated external root resorptions. (J Endod 2012;38:834-837)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In gene-banking, primordial germ cells (PGCs), which are embryonic precursor cells of germ cells, are useful for cryopreservation because PGCs have a potential to differentiate into both eggs and sperm via germ-line chimera. Here, we have established vitrification methods for PGCs cryopreservation using 12- to 17-somite stage embryos in loach, Misgurnus anguillicaudatus, which were dechorionated, removed their yolk and injected with green fluorescent protein (GFP) -nos1 3'UTR mRNA to visualize their PGCs. In order to optimize cryopreservation medium for vitrification, the toxicity of cryoprotectants was analyzed. Different concentrations (2, 3, 4, 5 m) of dimethyl sulfoxide (DMSO), methanol (MeOH), ethylene glycol (EG) and propylene glycol (PG) as cryoprotectants were tested. Then, 5 m DMSO showed significantly-high toxicity. Based on this information, combinations called DMP (2 m (14.2% [v/v]) DMSO, 2 m (8.1% [v/v]) MeOH and 2 m (14.4% [v/v]) PG), DP (2 m (14.2% [v/v]) DMSO and 4 m (28.7% [v/v]) PG) and DE (2.1 m (15% [v/v]) DMSO and 2.7 m (15% [v/v]) EG) were evaluated for their toxicities and efficacy of PGCs cryopreservation using two types of equilibration step: direct immersion of cryopreservation media (one-step) and serial exposure to half and full concentration of cryopreservation media (two-step). Viable PGCs were obtained from post-thaw embryos which were cryopreserved by DP and DE with both 1- and 2-step equilibrations. Despite DP showing the highest toxicity, it gave the highest survival rate of embryonic cells after cryopreservation. When PGCs recovered from vitrified embryos were transplanted into host embryos at the blastula stage, the transplanted PGCs were able to migrate to a host genital ridge similarly as endogenous PGCs. It suggests that our methods could be useful to create a germ-line chimera for the production of gametes from PGCs of cryopreserved embryos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to evaluate the response of rat subcutaneous tissue to MTA Fillapex® (Angelus), an experimental root canal filling material based on Portland cement and propylene glycol (PCPG), and a zinc oxide, eugenol and iodoform (ZOEI) paste. These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were stained with hematoxylin and eosin, and evaluated regarding inflammatory reaction parameters by optical microscopy. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated examiners for all experimental periods (kappa=0.96). The histological evaluation showed that all materials caused a moderate inflammatory reaction at 7 days, which subsided with time. A greater inflammatory reaction was observed at 7 days in the tubes filled with ZOEI paste. Tubes filled with MTA Fillapex presented some giant cells, macrophages and lymphocytes after 7 days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The tubes filled with PCPG showed similar results to those observed in MTA Fillapex. At 15 days, the inflammatory reaction was almost absent at the tissue, with several collagen fibers indicating normal tissue healing. Data were analyzed by the nonparametric Kruskal-Wallis test (?=0.05). Statistically significant difference (p<0.05) was found only between PCPG at 15 days and ZOEI at 7 days groups. No significant differences were observed among the other groups/periods (p>0.05). MTA Fillapex and Portland cement added with propylene glycol had greater tissue compatibility than the PCPG paste.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: The sealers can be in direct contact with the periapical tissues. Thus, these materials must have appropriate physical and biological properties, providing conditions for repair to occur. Objective: The aim of this study was to evaluate the response of rat subcutaneous tissue to endodontics sealers. Material and methods: Three materials comprised the groups: group I – Zinc Oxide, Eugenol and Iodoform paste, group II – Portland cement with propylene glycol, and group III – MTA Fillapex® (Angelus). These materials were placed in polyethylene tubes and implanted into dorsal connective tissue of Wistar rats for seven and 15 days. The specimens were stained with hematoxylin and eosin and evaluated regarding to inflammatory reaction parameters through a light microscope. The data were compared using Kruskal-Wallis test with significance level of 5%. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated observers for all experimental periods. Results: The histological evaluation showed that all the materials caused a moderated inflammatory reaction at seven days which decreased with time. A greater inflammatory reaction was observed at seven days in group I. The other specimens had significantly less inflammatory cells when compared to this group. Tubes with MTA Fillapex® presented some giant cells, macrophages and lymphocytes after seven days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The group II showed similar results to those observed in MTA Fillapex® already at seven days. At 15 days the inflammatory reaction presented was almost absent at the tissue, with many collagen fibers indicating normal tissue healing. Statistical analysis showed a significant statistical difference amongst the group I (seven days) and II (15 days) (p < 0.05). In the other groups no (Continue)