11 resultados para plate-and-frame heat exchanger
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The present paper presents a theoretical analysis of a cross flow heat exchanger with a new flow arrangement comprehending several tube rows. The thermal performance of the proposed flow arrangement is compared with the thermal performance of a typical counter cross flow arrangement that is used in chemical, refrigeration, automotive and air conditioning industries. The thermal performance comparison has been performed in terms of the following parameters: heat exchanger effectiveness and efficiency, dimensionless entropy generation, entransy dissipation number, and dimensionless local temperature differences. It is also shown that the uniformity of the temperature difference field leads to a higher thermal performance of the heat exchanger. In the present case this is accomplished thorough a different organization of the in-tube fluid circuits in the heat exchanger. The relation between the recently introduced "entransy dissipation number" and the conventional thermal effectiveness has been obtained in terms of the "number of transfer units". A case study has been solved to quantitatively to obtain the temperature difference distribution over two rows units involving the proposed arrangement and the counter cross flow one. It has been shown that the proposed arrangement presents better thermal performance regardless the comparison parameter. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of 1/4, 1/2, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 degrees C. For mass velocities higher than 200 kg/m(2)s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m(2)s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work used the colloidal theory to describe forces and energy interactions of colloidal complexes in the water and those formed during filtration run in direct filtration. Many interactions of particle energy profiles between colloidal surfaces for three geometries are presented here in: spherical, plate and cylindrical; and four surface interactions arrangements: two cylinders, two spheres, two plates and a sphere and a plate. Two different situations were analyzed, before and after electrostatic destabilization by action of the alum sulfate as coagulant in water studies samples prepared with kaolin. In the case were used mathematical modeling by extended DLVO theory (from the names: Derjarguin-Landau-Verwey-Overbeek) or XDLVO, which include traditional approach of the electric double layer (EDL), surfaces attraction forces or London-van der Waals (LvdW), esteric forces and hydrophobic forces, additionally considering another forces in colloidal system, like molecular repulsion or Born Repulsion and Acid-Base (AB) chemical function forces from Lewis.
Resumo:
In this work, the effect of the indentation load on the results of hardness and fracture toughness, determined by Vickers micro-hardness measurements, of some glasses and glass-ceramics has been investigated. Furthermore, in order to verify the effect of crystallinity on the results, glasses of composition 52.75 wt.% 3CaO center dot P2O5, 30 wt.% SiO2 and 17.25 wt.% MgO were fused at 1600 degrees C for 4 h and annealed at 700 degrees C for 2h, and further heat-treated at 700, 775, 800 and 900 degrees C for 4h. The obtained materials were analyzed by high resolution X-ray diffraction, HRXRD, to determine the crystallization degree in function of the heat-treatment temperature. The hardness of the different specimens was determined by Vickers' micro-hardness measurements under various loads. It has been observed that with increasing crystallization of the materials their hardness increased. Furthermore, it has been possible to verify the so-called indentation size effect (ISE), i.e. hardness decreases as the indentation depth, under higher loads, increases. This effect has been more pronounced in the glass-ceramic samples. Fracture toughness has been determined by the crack length induced by the Vickers indentations and relating them to the applied loads. Glass materials presented a fracture pattern with characteristics of cleavage, forming cracks of the half-penny shaped type, while the glass-ceramic materials exhibited crack bridging effects and Palmqvist type cracks. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study analyzes important aspects of the tropical Atlantic Ocean from simulations of the fourth version of the Community Climate System Model (CCSM4): the mean sea surface temperature (SST) and wind stress, the Atlantic warm pools, the principal modes of SST variability, and the heat budget in the Benguela region. The main goal was to assess the similarities and differences between the CCSM4 simulations and observations. The results indicate that the tropical Atlantic overall is realistic in CCSM4. However, there are still significant biases in the CCSM4 Atlantic SSTs, with a colder tropical North Atlantic and a hotter tropical South Atlantic, that are related to biases in the wind stress. These are also reflected in the Atlantic warm pools in April and September, with its volume greater than in observations in April and smaller than in observations in September. The variability of SSTs in the tropical Atlantic is well represented in CCSM4. However, in the equatorial and tropical South Atlantic regions, CCSM4 has two distinct modes of variability, in contrast to observed behavior. A model heat budget analysis of the Benguela region indicates that the variability of the upper-ocean temperature is dominated by vertical advection, followed by meridional advection.
Resumo:
Baccharis dracunculifolia is a plant native from Brazil, commonly known as 'Alecrim-do-campo' and 'Vassoura' and used in alternative medicine for the treatment of inflammation, hepatic disorders and stomach ulcers. Previous studies reported that artepillin C (ArtC, 3-{4-hydroxy-3,5-di(3-methyl-2-butenyl)phenyl}-2(E)-propenoic acid), is the main compound of interest in the leaves. This study was undertaken to assess the mutagenic effect of the ethyl acetate extract of B. dracunculifolia leaves (Bd-EAE: 11.4-182.8 mu g/plate) and ArtC (0.69-10.99 mu g/plate) by the Ames test using Salmonella typhimurium strains TA98, TA97a, TA100 and TA102, and to compare the protective effects of Bd-EAE and ArtC against the mutagenicity of a variety of direct and indirect acting mutagens such as 4-nitro-O-phenylenediamine, sodium azide, mitomycin C, benzo[a]pyrene, aflatoxin B1, 2-aminoanthracene and 2-aminofluorene. The mutagenicity test showed that Bd-EAE and ArtC did not induce an increase in the number of revertant colonies indicating absence of mutagenic activity. ArtC showed a similar antimutagenic effect to that of Bd-EAE in some strains of S. typhimurium, demonstrating that the antimutagenic activity of Bd-EAE can be partially attributed to ArtC. The present results showed that the protective effect of whole plant extracts is due to the combined and synergistic effects of a complex mixture of phytochemicals, the total activity of which may result in health benefits.
Resumo:
This study aims to compare and validate two soil-vegetation-atmosphere-transfer (SVAT) schemes: TERRA-ML and the Community Land Model (CLM). Both SVAT schemes are run in standalone mode (decoupled from an atmospheric model) and forced with meteorological in-situ measurements obtained at several tropical African sites. Model performance is quantified by comparing simulated sensible and latent heat fluxes with eddy-covariance measurements. Our analysis indicates that the Community Land Model corresponds more closely to the micrometeorological observations, reflecting the advantages of the higher model complexity and physical realism. Deficiencies in TERRA-ML are addressed and its performance is improved: (1) adjusting input data (root depth) to region-specific values (tropical evergreen forest) resolves dry-season underestimation of evapotranspiration; (2) adjusting the leaf area index and albedo (depending on hard-coded model constants) resolves overestimations of both latent and sensible heat fluxes; and (3) an unrealistic flux partitioning caused by overestimated superficial water contents is reduced by adjusting the hydraulic conductivity parameterization. CLM is by default more versatile in its global application on different vegetation types and climates. On the other hand, with its lower degree of complexity, TERRA-ML is much less computationally demanding, which leads to faster calculation times in a coupled climate simulation.
Resumo:
MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 degrees C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 C for 2 h. The degree of structural order disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.
Resumo:
This paper evaluates the thermal and luminous performance of different louver configurations on an office room model located in Maceió-AL (Brazil), ranking the alternatives in a way that leads to choices for alternatives with potential balanced performance. Parametric analyses were done, based on computer simulations on software Troplux 5 and DesignBuilder 2. The variables examined were number of slats, slat slope and slat reflectance, considering the window facing North, South, East and West and a fixed shading mask for each orientation. Results refer to internal average illuminance and solar heat gains through windows. It was observed that configurations of shading devices with the same shading mask may have different luminous and thermal performance. The alternatives were ranked, so the information here produced has the potential to support decisions on designing shading devices in practice.
Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America
Resumo:
Surface ecophysiology at five sites in tropical South America across vegetation and moisture gradients is investigated. From the moist northwest (Manaus) to the relatively dry southeast (Pé de Gigante, state of São Paulo) simulated seasonal cycles of latent and sensible heat, and carbon flux produced with the Simple Biosphere Model (SiB3) are confronted with observational data. In the northwest, abundant moisture is available, suggesting that the ecosystem is light-limited. In these wettest regions, Bowen ratio is consistently low, with little or no annual cycle. Carbon flux shows little or no annual cycle as well; efflux and uptake are determined by high-frequency variability in light and moisture availability. Moving downgradient in annual precipitation amount, dry season length is more clearly defined. In these regions, a dry season sink of carbon is observed and simulated. This sink is the result of the combination of increased photosynthetic production due to higher light levels, and decreased respiratory efflux due to soil drying. The differential response time of photosynthetic and respiratory processes produce observed annual cycles of net carbon flux. In drier regions, moisture and carbon fluxes are in-phase; there is carbon uptake during seasonal rains and efflux during the dry season. At the driest site, there is also a large annual cycle in latent and sensible heat flux.