3 resultados para pitting
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The corrosion protection of AA6063 aluminium alloy by cerium conversion, polyaniline conducting polymer and by duplex coatings has been investigated. The electrochemical behaviour was evaluated in aerated 3.5 wt.% NaCl. All coatings tested shifted the corrosion and pitting potentials to more positive values, indicating protection against corrosion. The duplex coatings are significantly more effective than each coating alone: corrosion and pitting potentials were shifted by +183 and +417 mV(SCE), respectively, by duplex coatings in relation to the untreated aluminium alloy. Optical microscopy and scanning electron microscopy are in agreement with the electrochemical results, reinforcing the superior performance of duplex coatings. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A new tri-electrode probe is presented and applied to local electrochemical impedance spectroscopy (LEIS) measurements. As opposed to two-probe systems, the three-probe one allows measurement not only of normal, but also of radial contributions of local current densities to the local impedance values. The results concerning the cases of the blocking electrode and the electrode with faradaic reaction are discussed from the theoretical point of view for a disk electrode. Numerical simulations and experimental results are compared for the case of the ferri/ferrocyanide electrode reaction at the Pt working electrode disk. At the centre of the disk, the impedance taking into account both normal and radial contributions was in good agreement with the local impedance measured in terms of only the normal contribution. At the periphery of the electrode, the impedance taking into account both normal and radial contributions differed significantly from the local impedance measured in terms of only the normal contribution. The radial impedance results at the periphery of the electrode are in good agreement with the usual explanation that the associated larger current density is attributed to the geometry of the electrode, which exhibits a greater accessibility at the electrode edge. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The patination of copper is known for its complexity and heterogeneous formation. For a deeper investigation, a locally resolved surface analysis was considered. An exact determination of the accessed area and a potentiostatic control in a three-electrode configuration was reached with the use of the electrochemical microcell technique, which enables local electrochemical measurement such as local electrochemical impedance spectroscopy and cyclic voltammetry. Such a technique provides a unique way for performing the investigation of heterogeneities on electrode surfaces. The local electrochemical measurements on the artificially patinated surface have allowed distinguishing areas of different reactivity even when the analysis of the surface revealed a homogenous chemical composition of patina. Local measurements with the electrochemical microcell showed the presence of small defects on the patina layer that can be modelled by considering a hemispherical diffusion process at small active areas surrounded by larger less reactive domains.