4 resultados para physiological recovery
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this study, the physiological responses and rate of perceived exertion in Brazilian jiu-jitsu fighters submitted to a combat simulation were investigated. Venous blood samples and heart rate were taken from twelve male Brazilian jiu-jitsu athletes (27.1+/-2.7 yrs, 75.4+/-8.8 kg, 174.9+/-4.4 cm, 9.2+/-2.4% fat), at rest, after a warm-up (ten minutes), immediately after the fight simulation (seven minutes) and after recovery (fourteen minutes). After the combat the rate of perceived exertion was collected. The combat of the Brazilian jiu-jitsu fighters did not change blood concentrations of glucose, triglycerides, total cholesterol, low density lipoprotein and very low density lipoprotein, ureia and ammonia. However, blood levels of high density lipoprotein were significantly higher post-fight (before: 43.0+/-6.9 mg/dL, after: 45.1+/-8.0 mg/dL) and stayed at high levels during the recovery period (43.6+/-8.1 mg/dL) compared to the rest values (40.0+/-6.6 mg/dL). The fight did not cause changes in the concentrations of the cell damage markers of creatine kinase, aspartate aminotransferase and creatinine. However, blood concentrations of the alanine aminotransferase (before: 16.1+/-7.1 U/L, after: 18.6+/-7.1 U/L) and lactate dehydrogenase (before: 491.5+/-177.6 U/L, after: 542.6+/-141.4 U/L) enzymes were elevated after the fight. Heart rate (before: 122+/-25 bpm, after: 165+/-17 bpm) and lactate (before: 2.5+/-1.2 mmol/L, after: 11.9+/-5.8 mmol/L) increased significantly with the completion of combat. Despite this, the athletes rated the fight as being light or somewhat hard (12+/-2). These results showed that muscle glycogen is not the only substrate used in Brazilian jiu-jitsu fights, since there are indications of activation of the glycolytic, lipolytic and proteolytic pathways. Furthermore, the athletes rated the combats as being light or somewhat hard although muscle damage markers were generated.
Resumo:
Pellegrino R, Sunaga DY, Guindalini C, Martins RC, Mazzotti DR, Wei Z, Daye ZJ, Andersen ML, Tufik S. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 44: 1003-1012, 2012. First published September 4, 2012; doi: 10.1152/physiolgenomics.00058.2012.-Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.
Resumo:
The purpose of this study was to determine the physiological, anthropometric, performance, and nutritional characteristics of the Brazil Canoe Polo National Team. Ten male canoe polo athletes (age 26.7 +/- 4.1 years) performed a battery of tests including assessments of anthropometric parameters, upper-body anaerobic power (Wingate), muscular strength, aerobic power, and nutritional profile. In addition, we characterized heart rate and plasma lactate responses and the temporal pattern of the effort/recovery during a simulated canoe polo match. The main results are as follows: body fat, 12.3 +/- 4.0%; upper-body peak and mean power, 6.8 +/- 0.5 and 4.7 +/- 0.4 W . kg(-1), respectively; 1-RM bench press, 99.1 +/- 11.7 kg; peak oxygen uptake, 44.3 +/- 5.8 mL . kg(-1) . min(-1); total energy intake, 42.8 +/- 8.6 kcal . kg(-1); protein, carbohydrate, and fat intakes, 1.9 +/- 0.1, 5.0 +/- 1.5, and 1.7 +/- 0.4 g . kg(-1), respectively; mean heart rate, 146 +/- 11 beats . min(-1); plasma lactate, 5.7 +/- 3.8 mmol . L-1 at half-time and 4.6 +/- 2.2 mmol . L-1 at the end of the match; effort time (relative to total match time), 93.1 +/- 3.0%; number of sprints, 9.6 +/- 4.4. The results of this study will assist coaches, trainers, and nutritionists in developing more adequate training programmes and dietary interventions for canoe polo athletes.
Resumo:
Background: The biobehavioural pain reactivity and recovery of preterm infants in the neonatal period may reflect the capacity of the central nervous system to regulate neurobiological development. Objective: The aim of the present study was to analyse the influence of the neonatal clinical risk for illness severity on biobehavioural pain reactivity in preterm infants. Methods: Fifty-two preterm infants were allocated into two groups according to neonatal severity of illness, as measured by the Clinical Risk Index for Babies (CRIB). The low clinical risk (LCr) group included 30 neonates with CRIB scores <4, and the high clinical risk (HCr) group included 22 neonates with CRIB scores >= 4. Pain reactivity was assessed during a blood collection, which was divided into five phases (baseline, antisepsis, puncture, recovery-dressing and recovery-resting). Behavioral pain reactivity was measured using the scores, and magnitude of responses in Neonatal Facial Coding System (NFCS) and Sleep-Wake States Scale (SWS). The heart rate was continuously recorded. Results: The HCr demonstrated a higher magnitude of response on the SWS score from the baseline to the puncture phase than the LCr. Also, the HCr exhibited a higher mean heart rate and minimum heart rate than the LCr in the recovery-resting phase. In addition, the HCr exhibited a higher minimum heart rate from the baseline to the recovery-resting phase than the LCr. Conclusion: The infants exhibiting a high neonatal clinical risk showed high arousal during the puncture procedure and higher physiological reactivity in the recovery phase.