5 resultados para performance degradation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR) packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate - PET, and polyvinyl chloride - PVC). The reactors were operated with a hydraulic retention time (HRT) of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L-1, resulting in phenol removal efficiencies of similar to 100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L-1. The phenol removal efficiency ranged from 90-100%.
Resumo:
A simple and sensitive analytical method for simultaneous determination of anastrozole, bicalutamide, and tamoxifen as well as their synthetic impurities, anastrozole pentamethyl, bicalutamide 3-fluoro-isomer, and tamoxifen e-isomer, was developed and validated by using high performance liquid chromatography (HPLC). The separation was achieved on a Symmetry (R) C-8 column (100 x 4.6 mm i.d., 3.5 mu m) at room temperature (+/- 24 degrees C), with a mobile phase consisting of acetonitrile/water containing 0.18% N,N dimethyloctylamine and pH adjusted to 3.0 with orthophosphoric acid (46.5/53.5, v/v) at a flow rate of 1.0 mL min(-1) within 20 min. The detection was made at a wavelength of 270 nm by using ultraviolet (UV) detector. No interference peaks from excipients and relative retention time indicated the specificity of the method. The calibration curve showed correlation coefficients (r) > 0.99 calculated by linear regression and analysis of variance (ANOVA). The limit of detection (LOD) and limit of quantitation (LOQ), respectively, were 2.2 and 6.7 mu g mL(-1) for anastrozole, 2.61 and 8.72 mu g mL(-1) for bicalutamide, 2.0 and 6.7 mu g mL(-1) for tamoxifen, 0.06 and 0.22 mu g mL(-1) for anastrozole pentamethyl, 0.02 and 0.07 mu g mL(-1) for bicalutamide 3-fluoro-isomer, and 0.002 and 0.007 mu g mL(-1) for tamoxifen e-isomer. Intraday and interday relative standard deviations (RSDs) were <2.0% (drugs) and <10% (degradation products) as well as the comparison between two different analysts, which were calculated by f test. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objective: This study evaluated the 56-month clinical performance of Class I and II resin composite restorations. Filtek P60 was compared with Filtek Z250, which are both indicated for posterior restorations but differ in terms of handling characteristics. The null hypothesis tested was that there is no difference in the clinical performance of the two resin composites in posterior teeth. Material and Methods: Thirty-three patients were treated by the same operator, who prepared 48 Class I and 42 Class II cavities, which were restored with Single Bond/Filtek Z250 or Single Bond/Filtek P60 restorative systems. Restorations were evaluated by two independent examiners at baseline and after 56 months, using the modified USPHS criteria. Data were analyzed statistically using Chi-square and Fisher's Exact tests (alpha=0.05). Results: After 56 months, 25 patients (31 Class I and 36 Class II) were analyzed. A 3% failure rate occurred due to secondary caries and excessive loss of anatomic form for P60. For both restorative systems, there were no significant differences in secondary caries and postoperative sensitivity. However, significant changes were observed with respect to anatomic form, marginal discoloration, and marginal adaptation. Significant decreases in surface texture were observed exclusively for the Z250 restorations. Conclusions: Both restorative systems can be used for posterior restorations and can be expected to perform well in the oral environment.
Resumo:
This paper presents simple, rapid, precise and accurate stability-indicating HPLC and CE methods, which were developed and validated for the determination of nitrendipine, nimodipine and nisoldipine. These drugs are calcium channel antagonists of the 1,4-dihydropyridine type which are used in the treatment of cardiovascular diseases. Experimental results showed a good linear correlation between the area and the concentration of drugs covering a relatively large domain of concentration in all cases. The linearity of the analytical procedures was in the range of 2.0-120.0 mu g mL-1 for nitrendipine, 1.0-100.0 mu g mL(-1) for nimodipine and 100.0-600.0 mu g mL(-1) for nisoldipine, the regression determination coefficient being higher than 0.99 in all cases. The proposed methods were found to have good precision and accuracy. The chemical stability of these drugs was determined under various conditions and the methods have shown adequate separation for their enantiomers and degradation products. In addition, degradation products produced as a result of stress studies did not interfere with the detection of the drugs' enantiomers and the assays can thus be considered stability-indicating.
Resumo:
ZnO and doped M:ZnO (M = V, Fe and Co) nanostructures were synthesized by microwave hydrothermal synthesis using a low temperature route without addition of any surfactant. The transition metal ions were successfully doped in small amount (3% mol) into ZnO structure. Analysis by X-ray diffraction reveals the formation of ZnO with the hexagonal (wurtzite-type) crystal structure for all the samples. The as-obtained samples showed a similar flower-like morphology except for Fe:ZnO samples, which presented a plate-like morphology. The photocatalytic performance for Rhodamine B (RhB) degradation confirmed that the photoactivity of M:ZnO nanostructures decreased for all dopants in structure, according to their eletronegativity. Photoluminescence spectroscopy was employed to correlate M:ZnO structure with its photocatalytical properties. It was suggested that transition metal ions in ZnO lattice introduce defects that act as trapping or recombination centers for photogenerated electrons and holes, making it impossible for them reach the surface and promote the photocatalytical process.